RT -Thread Studio开发环境下使用CAN设备驱动
作者:互联网
双击RT -Thread Settings,使用CAN设备驱动程序打钩
编译一下更新设备驱动到当期项目
然后在stm32f4xx_hal_conf.h文件中打开对CAN的支持,也就是取消掉 HAL_CAN_MODULE_ENABLED这个宏定义的注释
然后使用Cube MX配置一下CAN的引脚,然后复制生成的引脚初始化代码。
也就是void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)这个函数
粘贴到board.c文件中
然后在applications文件下新建一个my_can.c文件,用来写我们的CAN应用程序
在,my_can.c中粘贴以下代码
#include <rtthread.h>
#include "rtdevice.h"
#define CAN_DEV_NAME "can1" /* CAN 设备名称 */
static struct rt_semaphore rx_sem; /* 用于接收消息的信号量 */
static rt_device_t can_dev; /* CAN 设备句柄 */
/* 接收数据回调函数 */
static rt_err_t can_rx_call(rt_device_t dev, rt_size_t size)
{
/* CAN 接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
rt_sem_release(&rx_sem);
return RT_EOK;
}
static void can_rx_thread(void *parameter)
{
int i;
rt_err_t res;
struct rt_can_msg rxmsg = {0};
/* 设置接收回调函数 */
rt_device_set_rx_indicate(can_dev, can_rx_call);
#ifdef RT_CAN_USING_HDR
struct rt_can_filter_item items[5] =
{
RT_CAN_FILTER_ITEM_INIT(0x100, 0, 0, 1, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x100~0x1ff,hdr 为 - 1,设置默认过滤表 */
RT_CAN_FILTER_ITEM_INIT(0x300, 0, 0, 1, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x300~0x3ff,hdr 为 - 1 */
RT_CAN_FILTER_ITEM_INIT(0x211, 0, 0, 1, 0x7ff, RT_NULL, RT_NULL), /* std,match ID:0x211,hdr 为 - 1 */
RT_CAN_FILTER_STD_INIT(0x486, RT_NULL, RT_NULL), /* std,match ID:0x486,hdr 为 - 1 */
{0x555, 0, 0, 1, 0x7ff, 7,} /* std,match ID:0x555,hdr 为 7,指定设置 7 号过滤表 */
};
struct rt_can_filter_config cfg = {5, 1, items}; /* 一共有 5 个过滤表 */
/* 设置硬件过滤表 */
res = rt_device_control(can_dev, RT_CAN_CMD_SET_FILTER, &cfg);
RT_ASSERT(res == RT_EOK);
#endif
while (1)
{
/* hdr 值为 - 1,表示直接从 uselist 链表读取数据 */
rxmsg.hdr = -1;
/* 阻塞等待接收信号量 */
rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
/* 从 CAN 读取一帧数据 */
rt_device_read(can_dev, 0, &rxmsg, sizeof(rxmsg));
/* 打印数据 ID 及内容 */
rt_kprintf("ID:%x", rxmsg.id);
for (i = 0; i < 8; i++)
{
rt_kprintf("%2x", rxmsg.data[i]);
}
rt_kprintf("\n");
}
}
int can_sample(int argc, char *argv[])
{
struct rt_can_msg msg = {0};
rt_err_t res;
rt_size_t size;
rt_thread_t thread;
char can_name[RT_NAME_MAX];
if (argc == 2)
{
rt_strncpy(can_name, argv[1], RT_NAME_MAX);
}
else
{
rt_strncpy(can_name, CAN_DEV_NAME, RT_NAME_MAX);
}
/* 查找 CAN 设备 */
can_dev = rt_device_find(can_name);
if (!can_dev)
{
rt_kprintf("find %s failed!\n", can_name);
return RT_ERROR;
}
/* 初始化 CAN 接收信号量 */
rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
/* 以中断接收及发送方式打开 CAN 设备 */
res = rt_device_open(can_dev, RT_DEVICE_FLAG_INT_TX | RT_DEVICE_FLAG_INT_RX);
RT_ASSERT(res == RT_EOK);
/* 创建数据接收线程 */
thread = rt_thread_create("can_rx", can_rx_thread, RT_NULL, 1024, 25, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
else
{
rt_kprintf("create can_rx thread failed!\n");
}
msg.id = 0x78; /* ID 为 0x78 */
msg.ide = RT_CAN_STDID; /* 标准格式 */
msg.rtr = RT_CAN_DTR; /* 数据帧 */
msg.len = 8; /* 数据长度为 8 */
/* 待发送的 8 字节数据 */
msg.data[0] = 0x00;
msg.data[1] = 0x11;
msg.data[2] = 0x22;
msg.data[3] = 0x33;
msg.data[4] = 0x44;
msg.data[5] = 0x55;
msg.data[6] = 0x66;
msg.data[7] = 0x77;
/* 发送一帧 CAN 数据 */
size = rt_device_write(can_dev, 0, &msg, sizeof(msg));
if (size == 0)
{
rt_kprintf("can dev write data failed!\n");
}
return res;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(can_sample, can device sample);
这也是rt-thread官网上的CAN设备驱动代码。
然后发现drivers文件下没有drv_can.c和drv_can.h文件,从别的地方复制一个过来
#include "drv_can.h"
#ifdef RT_USING_CAN
#define LOG_TAG "drv_can"
#include <drv_log.h>
/* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) 36 / ((1 + 8 + 3) * 3) = 1MHz*/
#if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
};
//#elif defined (SOC_SERIES_STM32F4)/* APB1 45MHz(max) */
//static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
//{
// {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
// {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
// {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
// {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
// {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
// {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
// {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
// {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
// {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
//};
#elif defined (SOC_SERIES_STM32F4)/* APB1 42MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_4TQ | 4)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 300)}
};
#elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
{CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
{CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
{CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
{CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
{CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
{CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
{CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
{CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
{CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
};
#endif
#ifdef RT_USING_CAN1
static struct stm32_can drv_can1 =
{
.name = "can1",
.CanHandle.Instance = CAN1,
};
#endif
#ifdef RT_USING_CAN2
static struct stm32_can drv_can2 =
{
"can2",
.CanHandle.Instance = CAN2,
};
#endif
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (can_baud_rate_tab[index].baud_rate == baud)
return index;
}
return 0; /* default baud is CAN1MBaud */
}
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
struct stm32_can *drv_can;
rt_uint32_t baud_index;
RT_ASSERT(can);
RT_ASSERT(cfg);
drv_can = (struct stm32_can *)can->parent.user_data;
RT_ASSERT(drv_can);
drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
drv_can->CanHandle.Init.AutoBusOff = ENABLE;
drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
break;
case RT_CAN_MODE_LISEN:
drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
break;
}
baud_index = get_can_baud_index(cfg->baud_rate);
drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
/* init can */
if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
{
return -RT_ERROR;
}
/* default filter config */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
/* can start */
HAL_CAN_Start(&drv_can->CanHandle);
return RT_EOK;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
struct stm32_can *drv_can;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
drv_can = (struct stm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
if (CAN1 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN1_SCE_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
NVIC_DisableIRQ(CAN2_SCE_IRQn);
}
#endif
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
__HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
}
#endif
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
}
#endif
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
__HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
if (CAN1 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
}
#ifdef CAN2
if (CAN2 == drv_can->CanHandle.Instance)
{
HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
}
#endif
}
break;
case RT_CAN_CMD_SET_FILTER:
if (RT_NULL == arg)
{
/* default filter config */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
}
else
{
filter_cfg = (struct rt_can_filter_config *)arg;
/* get default filter */
for (int i = 0; i < filter_cfg->count; i++)
{
drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
drv_can->FilterConfig.FilterIdHigh = (filter_cfg->items[i].id >> 13) & 0xFFFF;
drv_can->FilterConfig.FilterIdLow = ((filter_cfg->items[i].id << 3) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
drv_can->FilterConfig.FilterMaskIdHigh = (filter_cfg->items[i].mask >> 16) & 0xFFFF;
drv_can->FilterConfig.FilterMaskIdLow = filter_cfg->items[i].mask & 0xFFFF;
drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
/* Filter conf */
HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
}
}
break;
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISEN)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.mode)
{
drv_can->device.config.mode = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.baud_rate)
{
drv_can->device.config.baud_rate = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.privmode)
{
drv_can->device.config.privmode = argval;
return _can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = drv_can->CanHandle.Instance->ESR;
drv_can->device.status.rcverrcnt = errtype >> 24;
drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can->device.status.lasterrtype = errtype & 0x70;
drv_can->device.status.errcode = errtype & 0x07;
rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
}
break;
}
return RT_EOK;
}
static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
CAN_HandleTypeDef *hcan;
hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
CAN_TxHeaderTypeDef txheader = {0};
HAL_CAN_StateTypeDef state = hcan->State;
/* Check the parameters */
RT_ASSERT(IS_CAN_DLC(pmsg->len));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/*check select mailbox is empty */
switch (1 << box_num)
{
case CAN_TX_MAILBOX0:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX1:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBOX2:
if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return -RT_ERROR;
}
break;
default:
RT_ASSERT(0);
break;
}
if (RT_CAN_STDID == pmsg->ide)
{
txheader.IDE = CAN_ID_STD;
RT_ASSERT(IS_CAN_STDID(pmsg->id));
txheader.StdId = pmsg->id;
}
else
{
txheader.IDE = CAN_ID_EXT;
RT_ASSERT(IS_CAN_EXTID(pmsg->id));
txheader.ExtId = pmsg->id;
}
if (RT_CAN_DTR == pmsg->rtr)
{
txheader.RTR = CAN_RTR_DATA;
}
else
{
txheader.RTR = CAN_RTR_REMOTE;
}
/* clear TIR */
hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
/* Set up the Id */
if (RT_CAN_STDID == pmsg->ide)
{
hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
}
else
{
hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
}
/* Set up the DLC */
hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
/* Set up the data field */
WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
/* Request transmission */
SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
return RT_EOK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return -RT_ERROR;
}
}
static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
HAL_StatusTypeDef status;
CAN_HandleTypeDef *hcan;
struct rt_can_msg *pmsg;
CAN_RxHeaderTypeDef rxheader = {0};
RT_ASSERT(can);
hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
pmsg = (struct rt_can_msg *) buf;
/* get data */
status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
if (HAL_OK != status)
return -RT_ERROR;
/* get id */
if (CAN_ID_STD == rxheader.IDE)
{
pmsg->ide = RT_CAN_STDID;
pmsg->id = rxheader.StdId;
}
else
{
pmsg->ide = RT_CAN_EXTID;
pmsg->id = rxheader.ExtId;
}
/* get type */
if (CAN_RTR_DATA == rxheader.RTR)
{
pmsg->rtr = RT_CAN_DTR;
}
else
{
pmsg->rtr = RT_CAN_RTR;
}
/* get len */
pmsg->len = rxheader.DLC;
/* get hdr */
if (hcan->Instance == CAN1)
{
pmsg->hdr = (rxheader.FilterMatchIndex + 1) >> 1;
}
#ifdef CAN2
else if (hcan->Instance == CAN2)
{
pmsg->hdr = (rxheader.FilterMatchIndex >> 1) + 14;
}
#endif
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
{
CAN_HandleTypeDef *hcan;
RT_ASSERT(can);
hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
switch (fifo)
{
case CAN_RX_FIFO0:
/* save to user list */
if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO0 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
{
/* Clear FIFO0 FULL Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
}
/* Check Overrun flag for FIFO0 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
{
/* Clear FIFO0 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
case CAN_RX_FIFO1:
/* save to user list */
if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO1 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
{
/* Clear FIFO1 FULL Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
}
/* Check Overrun flag for FIFO1 */
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
{
/* Clear FIFO1 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
}
}
#ifdef RT_USING_CAN1
/**
* @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
*/
void CAN1_TX_IRQHandler(void)
{
rt_interrupt_enter();
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX0 interrupts.
*/
void CAN1_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX1 interrupts.
*/
void CAN1_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 SCE interrupts.
*/
void CAN1_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can1.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
drv_can1.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
drv_can1.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
drv_can1.device.status.ackerrcnt++;
if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
drv_can1.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
drv_can1.device.status.crcerrcnt++;
break;
}
drv_can1.device.status.lasterrtype = errtype & 0x70;
drv_can1.device.status.rcverrcnt = errtype >> 24;
drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can1.device.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif /* RT_USING_CAN1 */
#ifdef RT_USING_CAN2
/**
* @brief This function handles CAN2 TX interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
rt_interrupt_enter();
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
}
else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
{
if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
}
else
{
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
/* Write 0 to Clear transmission status flag RQCPx */
SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
}
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX1 interrupts.
*/
void CAN2_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 SCE interrupts.
*/
void CAN2_SCE_IRQHandler(void)
{
rt_uint32_t errtype;
CAN_HandleTypeDef *hcan;
hcan = &drv_can2.CanHandle;
errtype = hcan->Instance->ESR;
rt_interrupt_enter();
HAL_CAN_IRQHandler(hcan);
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
drv_can2.device.status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
drv_can2.device.status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:
drv_can2.device.status.ackerrcnt++;
if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
drv_can2.device.status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
drv_can2.device.status.crcerrcnt++;
break;
}
drv_can2.device.status.lasterrtype = errtype & 0x70;
drv_can2.device.status.rcverrcnt = errtype >> 24;
drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can2.device.status.errcode = errtype & 0x07;
hcan->Instance->MSR |= CAN_MSR_ERRI;
rt_interrupt_leave();
}
#endif /* RT_USING_CAN2 */
/**
* @brief Error CAN callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERROR_WARNING |
CAN_IT_ERROR_PASSIVE |
CAN_IT_BUSOFF |
CAN_IT_LAST_ERROR_CODE |
CAN_IT_ERROR |
CAN_IT_RX_FIFO0_MSG_PENDING |
CAN_IT_RX_FIFO0_OVERRUN |
CAN_IT_RX_FIFO0_FULL |
CAN_IT_RX_FIFO1_MSG_PENDING |
CAN_IT_RX_FIFO1_OVERRUN |
CAN_IT_RX_FIFO1_FULL |
CAN_IT_TX_MAILBOX_EMPTY);
}
int rt_hw_can_init(void)
{
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.ticks = 50;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 14;
#ifdef CAN2
config.maxhdr = 28;
#endif
#endif
/* config default filter */
CAN_FilterTypeDef filterConf = {0};
filterConf.FilterIdHigh = 0x0000;
filterConf.FilterIdLow = 0x0000;
filterConf.FilterMaskIdHigh = 0x0000;
filterConf.FilterMaskIdLow = 0x0000;
filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
filterConf.FilterBank = 0;
filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
filterConf.FilterActivation = ENABLE;
filterConf.SlaveStartFilterBank = 14;
#ifdef RT_USING_CAN1
filterConf.FilterBank = 0;
drv_can1.FilterConfig = filterConf;
drv_can1.device.config = config;
/* register CAN1 device */
rt_hw_can_register(&drv_can1.device,
drv_can1.name,
&_can_ops,
&drv_can1);
#endif /* RT_USING_CAN1 */
#ifdef RT_USING_CAN2
filterConf.FilterBank = filterConf.SlaveStartFilterBank;
drv_can2.FilterConfig = filterConf;
drv_can2.device.config = config;
/* register CAN2 device */
rt_hw_can_register(&drv_can2.device,
drv_can2.name,
&_can_ops,
&drv_can2);
#endif /* RT_USING_CAN2 */
return 0;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif /* RT_USING_CAN */
/************************** end of file ******************/
drv_can.h文件内容如下
#ifndef __DRV_CAN_H__
#define __DRV_CAN_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <board.h>
#include <rtdevice.h>
#include <rtthread.h>
#define BS1SHIFT 16
#define BS2SHIFT 20
#define RRESCLSHIFT 0
#define SJWSHIFT 24
#define BS1MASK ((0x0F) << BS1SHIFT )
#define BS2MASK ((0x07) << BS2SHIFT )
#define RRESCLMASK (0x3FF << RRESCLSHIFT )
#define SJWMASK (0x3 << SJWSHIFT )
struct stm32_baud_rate_tab
{
rt_uint32_t baud_rate;
rt_uint32_t config_data;
};
#define BAUD_DATA(TYPE,NO) ((can_baud_rate_tab[NO].config_data & TYPE##MASK))
/* stm32 can device */
struct stm32_can
{
char *name;
CAN_HandleTypeDef CanHandle;
CAN_FilterTypeDef FilterConfig;
struct rt_can_device device; /* inherit from can device */
};
int rt_hw_can_init(void);
#ifdef __cplusplus
}
#endif
#endif /*__DRV_CAN_H__ */
注意:我这里用的是STM32F407VGT6的芯片,其他芯片型号类似。
然后在rtconfig.h文件里添加RT_USING_CAN1的宏定义
然后编译、下载,连接好CAN调试器,波特率1000K
命令行输入can_sample can1
系统查找can1设备,并发送8个字节的数据,可以看到can调试器也接收到数据了。
然后用can调试器给单片机发数据,单片机接收数据也正常
标签:RT,rt,HAL,Thread,drv,Studio,device,hcan 来源: https://blog.csdn.net/qq_25186745/article/details/112788923