其他分享
首页 > 其他分享> > RT -Thread Studio开发环境下使用CAN设备驱动

RT -Thread Studio开发环境下使用CAN设备驱动

作者:互联网

双击RT -Thread Settings,使用CAN设备驱动程序打钩

编译一下更新设备驱动到当期项目

然后在stm32f4xx_hal_conf.h文件中打开对CAN的支持,也就是取消掉 HAL_CAN_MODULE_ENABLED这个宏定义的注释

然后使用Cube MX配置一下CAN的引脚,然后复制生成的引脚初始化代码。

也就是void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)这个函数

粘贴到board.c文件中

然后在applications文件下新建一个my_can.c文件,用来写我们的CAN应用程序

在,my_can.c中粘贴以下代码

#include <rtthread.h>
#include "rtdevice.h"

#define CAN_DEV_NAME       "can1"      /* CAN 设备名称 */

static struct rt_semaphore rx_sem;     /* 用于接收消息的信号量 */
static rt_device_t can_dev;            /* CAN 设备句柄 */

/* 接收数据回调函数 */
static rt_err_t can_rx_call(rt_device_t dev, rt_size_t size)
{
    /* CAN 接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
    rt_sem_release(&rx_sem);

    return RT_EOK;
}

static void can_rx_thread(void *parameter)
{
    int i;
    rt_err_t res;
    struct rt_can_msg rxmsg = {0};

    /* 设置接收回调函数 */
    rt_device_set_rx_indicate(can_dev, can_rx_call);

#ifdef RT_CAN_USING_HDR
    struct rt_can_filter_item items[5] =
    {
        RT_CAN_FILTER_ITEM_INIT(0x100, 0, 0, 1, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x100~0x1ff,hdr 为 - 1,设置默认过滤表 */
        RT_CAN_FILTER_ITEM_INIT(0x300, 0, 0, 1, 0x700, RT_NULL, RT_NULL), /* std,match ID:0x300~0x3ff,hdr 为 - 1 */
        RT_CAN_FILTER_ITEM_INIT(0x211, 0, 0, 1, 0x7ff, RT_NULL, RT_NULL), /* std,match ID:0x211,hdr 为 - 1 */
        RT_CAN_FILTER_STD_INIT(0x486, RT_NULL, RT_NULL),                  /* std,match ID:0x486,hdr 为 - 1 */
        {0x555, 0, 0, 1, 0x7ff, 7,}                                       /* std,match ID:0x555,hdr 为 7,指定设置 7 号过滤表 */
    };
    struct rt_can_filter_config cfg = {5, 1, items}; /* 一共有 5 个过滤表 */
    /* 设置硬件过滤表 */
    res = rt_device_control(can_dev, RT_CAN_CMD_SET_FILTER, &cfg);
    RT_ASSERT(res == RT_EOK);
#endif

    while (1)
    {
        /* hdr 值为 - 1,表示直接从 uselist 链表读取数据 */
        rxmsg.hdr = -1;
        /* 阻塞等待接收信号量 */
        rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
        /* 从 CAN 读取一帧数据 */
        rt_device_read(can_dev, 0, &rxmsg, sizeof(rxmsg));
        /* 打印数据 ID 及内容 */
        rt_kprintf("ID:%x", rxmsg.id);
        for (i = 0; i < 8; i++)
        {
            rt_kprintf("%2x", rxmsg.data[i]);
        }

        rt_kprintf("\n");
    }
}

int can_sample(int argc, char *argv[])
{
    struct rt_can_msg msg = {0};
    rt_err_t res;
    rt_size_t  size;
    rt_thread_t thread;
    char can_name[RT_NAME_MAX];

    if (argc == 2)
    {
        rt_strncpy(can_name, argv[1], RT_NAME_MAX);
    }
    else
    {
        rt_strncpy(can_name, CAN_DEV_NAME, RT_NAME_MAX);
    }
    /* 查找 CAN 设备 */
    can_dev = rt_device_find(can_name);
    if (!can_dev)
    {
        rt_kprintf("find %s failed!\n", can_name);
        return RT_ERROR;
    }

    /* 初始化 CAN 接收信号量 */
    rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);

    /* 以中断接收及发送方式打开 CAN 设备 */
    res = rt_device_open(can_dev, RT_DEVICE_FLAG_INT_TX | RT_DEVICE_FLAG_INT_RX);
    RT_ASSERT(res == RT_EOK);
    /* 创建数据接收线程 */
    thread = rt_thread_create("can_rx", can_rx_thread, RT_NULL, 1024, 25, 10);
    if (thread != RT_NULL)
    {
        rt_thread_startup(thread);
    }
    else
    {
        rt_kprintf("create can_rx thread failed!\n");
    }

    msg.id = 0x78;              /* ID 为 0x78 */
    msg.ide = RT_CAN_STDID;     /* 标准格式 */
    msg.rtr = RT_CAN_DTR;       /* 数据帧 */
    msg.len = 8;                /* 数据长度为 8 */
    /* 待发送的 8 字节数据 */
    msg.data[0] = 0x00;
    msg.data[1] = 0x11;
    msg.data[2] = 0x22;
    msg.data[3] = 0x33;
    msg.data[4] = 0x44;
    msg.data[5] = 0x55;
    msg.data[6] = 0x66;
    msg.data[7] = 0x77;
    /* 发送一帧 CAN 数据 */
    size = rt_device_write(can_dev, 0, &msg, sizeof(msg));
    if (size == 0)
    {
        rt_kprintf("can dev write data failed!\n");
    }

    return res;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(can_sample, can device sample);

这也是rt-thread官网上的CAN设备驱动代码。

然后发现drivers文件下没有drv_can.c和drv_can.h文件,从别的地方复制一个过来

#include "drv_can.h"
#ifdef RT_USING_CAN

#define LOG_TAG    "drv_can"
#include <drv_log.h>

/* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp)  36 / ((1 + 8 + 3) * 3) = 1MHz*/
#if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
    {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 3)},
    {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ  | CAN_BS2_3TQ | 5)},
    {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 6)},
    {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 12)},
    {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 24)},
    {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 30)},
    {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 60)},
    {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 150)},
    {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_3TQ | 300)}
};
//#elif defined (SOC_SERIES_STM32F4)/* APB1 45MHz(max) */
//static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
//{
//    {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 3)},
//    {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_5TQ | 4)},
//    {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 6)},
//    {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 12)},
//    {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 24)},
//    {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 30)},
//    {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 60)},
//    {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 150)},
//    {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_5TQ | 300)}
//};
#elif defined (SOC_SERIES_STM32F4)/* APB1 42MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
    {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 3)},
    {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ  | CAN_BS2_4TQ | 4)},
    {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 6)},
    {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 12)},
    {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 24)},
    {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 30)},
    {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 60)},
    {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 150)},
    {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_4TQ | 300)}
};
#elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
{
    {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 3)},
    {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ  | CAN_BS2_7TQ | 4)},
    {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 6)},
    {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 12)},
    {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 24)},
    {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 30)},
    {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 60)},
    {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 150)},
    {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ  | CAN_BS2_7TQ | 300)}
};
#endif

#ifdef RT_USING_CAN1
static struct stm32_can drv_can1 =
{
    .name = "can1",
    .CanHandle.Instance = CAN1,
};
#endif

#ifdef RT_USING_CAN2
static struct stm32_can drv_can2 =
{
    "can2",
    .CanHandle.Instance = CAN2,
};
#endif

static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
    rt_uint32_t len, index;

    len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
    for (index = 0; index < len; index++)
    {
        if (can_baud_rate_tab[index].baud_rate == baud)
            return index;
    }

    return 0; /* default baud is CAN1MBaud */
}

static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
    struct stm32_can *drv_can;
    rt_uint32_t baud_index;

    RT_ASSERT(can);
    RT_ASSERT(cfg);
    drv_can = (struct stm32_can *)can->parent.user_data;
    RT_ASSERT(drv_can);

    drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
    drv_can->CanHandle.Init.AutoBusOff = ENABLE;
    drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
    drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
    drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
    drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;

    switch (cfg->mode)
    {
    case RT_CAN_MODE_NORMAL:
        drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
        break;
    case RT_CAN_MODE_LISEN:
        drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
        break;
    case RT_CAN_MODE_LOOPBACK:
        drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
        break;
    case RT_CAN_MODE_LOOPBACKANLISEN:
        drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
        break;
    }

    baud_index = get_can_baud_index(cfg->baud_rate);
    drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
    drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
    drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
    drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
    /* init can */
    if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
    {
        return -RT_ERROR;
    }

    /* default filter config */
    HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
    /* can start */
    HAL_CAN_Start(&drv_can->CanHandle);

    return RT_EOK;
}

static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
    rt_uint32_t argval;
    struct stm32_can *drv_can;
    struct rt_can_filter_config *filter_cfg;

    RT_ASSERT(can != RT_NULL);
    drv_can = (struct stm32_can *)can->parent.user_data;
    RT_ASSERT(drv_can != RT_NULL);

    switch (cmd)
    {
    case RT_DEVICE_CTRL_CLR_INT:
        argval = (rt_uint32_t) arg;
        if (argval == RT_DEVICE_FLAG_INT_RX)
        {
            if (CAN1 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
                HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
                HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
            }
#endif
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
        }
        else if (argval == RT_DEVICE_FLAG_INT_TX)
        {
            if (CAN1 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
            }
#endif
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
        }
        else if (argval == RT_DEVICE_CAN_INT_ERR)
        {
            if (CAN1 == drv_can->CanHandle.Instance)
            {
                NVIC_DisableIRQ(CAN1_SCE_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                NVIC_DisableIRQ(CAN2_SCE_IRQn);
            }
#endif
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
            __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
        }
        break;
    case RT_DEVICE_CTRL_SET_INT:
        argval = (rt_uint32_t) arg;
        if (argval == RT_DEVICE_FLAG_INT_RX)
        {
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);

            if (CAN1 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
                HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
                HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
            }
#endif
        }
        else if (argval == RT_DEVICE_FLAG_INT_TX)
        {
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);

            if (CAN1 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
            }
#endif
        }
        else if (argval == RT_DEVICE_CAN_INT_ERR)
        {
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
            __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);

            if (CAN1 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
            }
#ifdef CAN2
            if (CAN2 == drv_can->CanHandle.Instance)
            {
                HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
                HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
            }
#endif
        }
        break;
    case RT_CAN_CMD_SET_FILTER:
        if (RT_NULL == arg)
        {
            /* default filter config */
            HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
        }
        else
        {
            filter_cfg = (struct rt_can_filter_config *)arg;
            /* get default filter */
            for (int i = 0; i < filter_cfg->count; i++)
            {
                drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr;
                drv_can->FilterConfig.FilterIdHigh = (filter_cfg->items[i].id >> 13) & 0xFFFF;
                drv_can->FilterConfig.FilterIdLow = ((filter_cfg->items[i].id << 3) |
                                                    (filter_cfg->items[i].ide << 2) |
                                                    (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
                drv_can->FilterConfig.FilterMaskIdHigh = (filter_cfg->items[i].mask >> 16) & 0xFFFF;
                drv_can->FilterConfig.FilterMaskIdLow = filter_cfg->items[i].mask & 0xFFFF;
                drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
                /* Filter conf */
                HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
            }
        }
        break;
    case RT_CAN_CMD_SET_MODE:
        argval = (rt_uint32_t) arg;
        if (argval != RT_CAN_MODE_NORMAL &&
                argval != RT_CAN_MODE_LISEN &&
                argval != RT_CAN_MODE_LOOPBACK &&
                argval != RT_CAN_MODE_LOOPBACKANLISEN)
        {
            return -RT_ERROR;
        }
        if (argval != drv_can->device.config.mode)
        {
            drv_can->device.config.mode = argval;
            return _can_config(&drv_can->device, &drv_can->device.config);
        }
        break;
    case RT_CAN_CMD_SET_BAUD:
        argval = (rt_uint32_t) arg;
        if (argval != CAN1MBaud &&
                argval != CAN800kBaud &&
                argval != CAN500kBaud &&
                argval != CAN250kBaud &&
                argval != CAN125kBaud &&
                argval != CAN100kBaud &&
                argval != CAN50kBaud  &&
                argval != CAN20kBaud  &&
                argval != CAN10kBaud)
        {
            return -RT_ERROR;
        }
        if (argval != drv_can->device.config.baud_rate)
        {
            drv_can->device.config.baud_rate = argval;
            return _can_config(&drv_can->device, &drv_can->device.config);
        }
        break;
    case RT_CAN_CMD_SET_PRIV:
        argval = (rt_uint32_t) arg;
        if (argval != RT_CAN_MODE_PRIV &&
                argval != RT_CAN_MODE_NOPRIV)
        {
            return -RT_ERROR;
        }
        if (argval != drv_can->device.config.privmode)
        {
            drv_can->device.config.privmode = argval;
            return _can_config(&drv_can->device, &drv_can->device.config);
        }
        break;
    case RT_CAN_CMD_GET_STATUS:
    {
        rt_uint32_t errtype;
        errtype = drv_can->CanHandle.Instance->ESR;
        drv_can->device.status.rcverrcnt = errtype >> 24;
        drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
        drv_can->device.status.lasterrtype = errtype & 0x70;
        drv_can->device.status.errcode = errtype & 0x07;

        rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
    }
    break;
    }

    return RT_EOK;
}

static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
    CAN_HandleTypeDef *hcan;
    hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
    struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
    CAN_TxHeaderTypeDef txheader = {0};
    HAL_CAN_StateTypeDef state = hcan->State;

    /* Check the parameters */
    RT_ASSERT(IS_CAN_DLC(pmsg->len));

    if ((state == HAL_CAN_STATE_READY) ||
            (state == HAL_CAN_STATE_LISTENING))
    {
        /*check select mailbox  is empty */
        switch (1 << box_num)
        {
        case CAN_TX_MAILBOX0:
            if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
            {
                /* Change CAN state */
                hcan->State = HAL_CAN_STATE_ERROR;
                /* Return function status */
                return -RT_ERROR;
            }
            break;
        case CAN_TX_MAILBOX1:
            if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
            {
                /* Change CAN state */
                hcan->State = HAL_CAN_STATE_ERROR;
                /* Return function status */
                return -RT_ERROR;
            }
            break;
        case CAN_TX_MAILBOX2:
            if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
            {
                /* Change CAN state */
                hcan->State = HAL_CAN_STATE_ERROR;
                /* Return function status */
                return -RT_ERROR;
            }
            break;
        default:
            RT_ASSERT(0);
            break;
        }

        if (RT_CAN_STDID == pmsg->ide)
        {
            txheader.IDE = CAN_ID_STD;
            RT_ASSERT(IS_CAN_STDID(pmsg->id));
            txheader.StdId = pmsg->id;
        }
        else
        {
            txheader.IDE = CAN_ID_EXT;
            RT_ASSERT(IS_CAN_EXTID(pmsg->id));
            txheader.ExtId = pmsg->id;
        }

        if (RT_CAN_DTR == pmsg->rtr)
        {
            txheader.RTR = CAN_RTR_DATA;
        }
        else
        {
            txheader.RTR = CAN_RTR_REMOTE;
        }
        /* clear TIR */
        hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
        /* Set up the Id */
        if (RT_CAN_STDID == pmsg->ide)
        {
            hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
        }
        else
        {
            hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
        }
        /* Set up the DLC */
        hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
        /* Set up the data field */
        WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
                  ((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
                  ((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
                  ((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
                  ((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
        WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
                  ((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
                  ((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
                  ((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
                  ((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
        /* Request transmission */
        SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);

        return RT_EOK;
    }
    else
    {
        /* Update error code */
        hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;

        return -RT_ERROR;
    }
}

static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
    HAL_StatusTypeDef status;
    CAN_HandleTypeDef *hcan;
    struct rt_can_msg *pmsg;
    CAN_RxHeaderTypeDef rxheader = {0};

    RT_ASSERT(can);

    hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
    pmsg = (struct rt_can_msg *) buf;

    /* get data */
    status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
    if (HAL_OK != status)
        return -RT_ERROR;
    /* get id */
    if (CAN_ID_STD == rxheader.IDE)
    {
        pmsg->ide = RT_CAN_STDID;
        pmsg->id = rxheader.StdId;
    }
    else
    {
        pmsg->ide = RT_CAN_EXTID;
        pmsg->id = rxheader.ExtId;
    }
    /* get type */
    if (CAN_RTR_DATA == rxheader.RTR)
    {
        pmsg->rtr = RT_CAN_DTR;
    }
    else
    {
        pmsg->rtr = RT_CAN_RTR;
    }
    /* get len */
    pmsg->len = rxheader.DLC;
    /* get hdr */
    if (hcan->Instance == CAN1)
    {
        pmsg->hdr = (rxheader.FilterMatchIndex + 1) >> 1;
    }
#ifdef CAN2
    else if (hcan->Instance == CAN2)
    {
       pmsg->hdr = (rxheader.FilterMatchIndex >> 1) + 14;
    }
#endif

    return RT_EOK;
}


static const struct rt_can_ops _can_ops =
{
    _can_config,
    _can_control,
    _can_sendmsg,
    _can_recvmsg,
};

static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
{
    CAN_HandleTypeDef *hcan;
    RT_ASSERT(can);
    hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;

    switch (fifo)
    {
    case CAN_RX_FIFO0:
        /* save to user list */
        if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
        {
            rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
        }
        /* Check FULL flag for FIFO0 */
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
        {
            /* Clear FIFO0 FULL Flag */
            __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
        }

        /* Check Overrun flag for FIFO0 */
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
        {
            /* Clear FIFO0 Overrun Flag */
            __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
            rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
        }
        break;
    case CAN_RX_FIFO1:
        /* save to user list */
        if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
        {
            rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
        }
        /* Check FULL flag for FIFO1 */
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
        {
            /* Clear FIFO1 FULL Flag */
            __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
        }

        /* Check Overrun flag for FIFO1 */
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
        {
            /* Clear FIFO1 Overrun Flag */
            __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
            rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
        }
        break;
    }
}

#ifdef RT_USING_CAN1
/**
 * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
 */
void CAN1_TX_IRQHandler(void)
{
    rt_interrupt_enter();
    CAN_HandleTypeDef *hcan;
    hcan = &drv_can1.CanHandle;
    if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
    }
    else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
    }
    else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
    }
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN1 RX0 interrupts.
 */
void CAN1_RX0_IRQHandler(void)
{
    rt_interrupt_enter();
    _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN1 RX1 interrupts.
 */
void CAN1_RX1_IRQHandler(void)
{
    rt_interrupt_enter();
    _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN1 SCE interrupts.
 */
void CAN1_SCE_IRQHandler(void)
{
    rt_uint32_t errtype;
    CAN_HandleTypeDef *hcan;

    hcan = &drv_can1.CanHandle;
    errtype = hcan->Instance->ESR;

    rt_interrupt_enter();
    HAL_CAN_IRQHandler(hcan);

    switch ((errtype & 0x70) >> 4)
    {
    case RT_CAN_BUS_BIT_PAD_ERR:
        drv_can1.device.status.bitpaderrcnt++;
        break;
    case RT_CAN_BUS_FORMAT_ERR:
        drv_can1.device.status.formaterrcnt++;
        break;
    case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
        drv_can1.device.status.ackerrcnt++;
        if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
        else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
        else if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
        break;
    case RT_CAN_BUS_IMPLICIT_BIT_ERR:
    case RT_CAN_BUS_EXPLICIT_BIT_ERR:
        drv_can1.device.status.biterrcnt++;
        break;
    case RT_CAN_BUS_CRC_ERR:
        drv_can1.device.status.crcerrcnt++;
        break;
    }

    drv_can1.device.status.lasterrtype = errtype & 0x70;
    drv_can1.device.status.rcverrcnt = errtype >> 24;
    drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF);
    drv_can1.device.status.errcode = errtype & 0x07;
    hcan->Instance->MSR |= CAN_MSR_ERRI;
    rt_interrupt_leave();
}
#endif /* RT_USING_CAN1 */

#ifdef RT_USING_CAN2
/**
 * @brief This function handles CAN2 TX interrupts.
 */
void CAN2_TX_IRQHandler(void)
{
    rt_interrupt_enter();
    CAN_HandleTypeDef *hcan;
    hcan = &drv_can2.CanHandle;
    if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 0 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
    }
    else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 1 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
    }
    else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
    {
        if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | 2 << 8);
        }
        else
        {
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
        }
        /* Write 0 to Clear transmission status flag RQCPx */
        SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
    }
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN2 RX0 interrupts.
 */
void CAN2_RX0_IRQHandler(void)
{
    rt_interrupt_enter();
    _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN2 RX1 interrupts.
 */
void CAN2_RX1_IRQHandler(void)
{
    rt_interrupt_enter();
    _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
    rt_interrupt_leave();
}

/**
 * @brief This function handles CAN2 SCE interrupts.
 */
void CAN2_SCE_IRQHandler(void)
{
    rt_uint32_t errtype;
    CAN_HandleTypeDef *hcan;

    hcan = &drv_can2.CanHandle;
    errtype = hcan->Instance->ESR;

    rt_interrupt_enter();
    HAL_CAN_IRQHandler(hcan);

    switch ((errtype & 0x70) >> 4)
    {
    case RT_CAN_BUS_BIT_PAD_ERR:
        drv_can2.device.status.bitpaderrcnt++;
        break;
    case RT_CAN_BUS_FORMAT_ERR:
        drv_can2.device.status.formaterrcnt++;
        break;
    case RT_CAN_BUS_ACK_ERR:
        drv_can2.device.status.ackerrcnt++;
        if (!READ_BIT(drv_can1.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8);
        else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8);
        else if (!READ_BIT(drv_can2.CanHandle.Instance->TSR, CAN_FLAG_TXOK0))
            rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8);
        break;
    case RT_CAN_BUS_IMPLICIT_BIT_ERR:
    case RT_CAN_BUS_EXPLICIT_BIT_ERR:
        drv_can2.device.status.biterrcnt++;
        break;
    case RT_CAN_BUS_CRC_ERR:
        drv_can2.device.status.crcerrcnt++;
        break;
    }

    drv_can2.device.status.lasterrtype = errtype & 0x70;
    drv_can2.device.status.rcverrcnt = errtype >> 24;
    drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF);
    drv_can2.device.status.errcode = errtype & 0x07;
    hcan->Instance->MSR |= CAN_MSR_ERRI;
    rt_interrupt_leave();
}
#endif /* RT_USING_CAN2 */

/**
 * @brief  Error CAN callback.
 * @param  hcan pointer to a CAN_HandleTypeDef structure that contains
 *         the configuration information for the specified CAN.
 * @retval None
 */
void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
    __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERROR_WARNING |
                        CAN_IT_ERROR_PASSIVE |
                        CAN_IT_BUSOFF |
                        CAN_IT_LAST_ERROR_CODE |
                        CAN_IT_ERROR |
                        CAN_IT_RX_FIFO0_MSG_PENDING |
                        CAN_IT_RX_FIFO0_OVERRUN |
                        CAN_IT_RX_FIFO0_FULL |
                        CAN_IT_RX_FIFO1_MSG_PENDING |
                        CAN_IT_RX_FIFO1_OVERRUN |
                        CAN_IT_RX_FIFO1_FULL |
                        CAN_IT_TX_MAILBOX_EMPTY);
}

int rt_hw_can_init(void)
{
    struct can_configure config = CANDEFAULTCONFIG;
    config.privmode = RT_CAN_MODE_NOPRIV;
    config.ticks = 50;
#ifdef RT_CAN_USING_HDR
    config.maxhdr = 14;
#ifdef CAN2
    config.maxhdr = 28;
#endif
#endif
    /* config default filter */
    CAN_FilterTypeDef filterConf = {0};
    filterConf.FilterIdHigh = 0x0000;
    filterConf.FilterIdLow = 0x0000;
    filterConf.FilterMaskIdHigh = 0x0000;
    filterConf.FilterMaskIdLow = 0x0000;
    filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
    filterConf.FilterBank = 0;
    filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
    filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
    filterConf.FilterActivation = ENABLE;
    filterConf.SlaveStartFilterBank = 14;

#ifdef RT_USING_CAN1
    filterConf.FilterBank = 0;

    drv_can1.FilterConfig = filterConf;
    drv_can1.device.config = config;
    /* register CAN1 device */
    rt_hw_can_register(&drv_can1.device,
                       drv_can1.name,
                       &_can_ops,
                       &drv_can1);
#endif /* RT_USING_CAN1 */

#ifdef RT_USING_CAN2
    filterConf.FilterBank = filterConf.SlaveStartFilterBank;

    drv_can2.FilterConfig = filterConf;
    drv_can2.device.config = config;
    /* register CAN2 device */
    rt_hw_can_register(&drv_can2.device,
                       drv_can2.name,
                       &_can_ops,
                       &drv_can2);
#endif /* RT_USING_CAN2 */

    return 0;
}

INIT_BOARD_EXPORT(rt_hw_can_init);

#endif /* RT_USING_CAN */

/************************** end of file ******************/

drv_can.h文件内容如下

#ifndef __DRV_CAN_H__
#define __DRV_CAN_H__

#ifdef __cplusplus
extern "C" {
#endif

#include <board.h>
#include <rtdevice.h>
#include <rtthread.h>

#define BS1SHIFT        16
#define BS2SHIFT        20
#define RRESCLSHIFT     0
#define SJWSHIFT        24
#define BS1MASK         ((0x0F) << BS1SHIFT )
#define BS2MASK         ((0x07) << BS2SHIFT )
#define RRESCLMASK      (0x3FF << RRESCLSHIFT )
#define SJWMASK         (0x3 << SJWSHIFT )

struct stm32_baud_rate_tab
{
    rt_uint32_t baud_rate;
    rt_uint32_t config_data;
};
#define BAUD_DATA(TYPE,NO)       ((can_baud_rate_tab[NO].config_data & TYPE##MASK))

/* stm32 can device */
struct stm32_can
{
    char *name;
    CAN_HandleTypeDef CanHandle;
    CAN_FilterTypeDef FilterConfig;
    struct rt_can_device device;     /* inherit from can device */
};

int rt_hw_can_init(void);

#ifdef __cplusplus
}
#endif

#endif /*__DRV_CAN_H__ */

注意:我这里用的是STM32F407VGT6的芯片,其他芯片型号类似。

然后在rtconfig.h文件里添加RT_USING_CAN1的宏定义

然后编译、下载,连接好CAN调试器,波特率1000K

命令行输入can_sample can1

系统查找can1设备,并发送8个字节的数据,可以看到can调试器也接收到数据了。

然后用can调试器给单片机发数据,单片机接收数据也正常

 

标签:RT,rt,HAL,Thread,drv,Studio,device,hcan
来源: https://blog.csdn.net/qq_25186745/article/details/112788923