机械臂正逆运动学-----数值解
作者:互联网
机械臂正逆运动学-----数值解
机械臂的运动学包括正运动学和逆运动学,其雅可比矩阵代表速度级的正逆运动学,机械臂的逆运动学数值解采用雅可比矩阵在求取速度级的逆运动学,然后采用迭代法求取位置级逆运动学。
建立DH坐标系
源代码:
#DH参数
DH0_armc = np.array([[0, -pi/2, 0, 0.248],
[0, pi/2, 0, 0 ],
[0, -pi/2, 0, 0.305],
[0, pi/2, 0, 0 ],
[0, -pi/2, 0, 0.306],
[0, pi/2, 0, 0 ],
[0, 0, 0, 0.213]])
#关节极限
q_min_armc = np.array([-180, -95, -180, -95, -180, -95, -180])*pi/180
q_max_armc = np.array([180, 95, 180, 95, 180, 95, 180])*pi/180
求正运动学
单关节齐次传递矩阵
源代码:
#单关节传递矩阵
def trans(theta,alpha,a,d):
'''
本函数用于求取n自由度机械臂正运动学
输入参数为DH参数,角度单位为rad,长度单位为mm
参数分别为theta,alpha,a,d,为0维常数值
返回齐次传递函数矩阵
'''
T = np.array([[math.cos(theta), -math.sin(theta)*math.cos(alpha), math.sin(theta)*math.sin(alpha), a*math.cos(theta)],
[math.sin(theta), math.cos(theta)*math.cos(alpha), -math.cos(theta)*math.sin(alpha), a*math.sin(theta)],
[0, math.sin(alpha), math.cos(alpha), d ],
[0, 0, 0, 1 ]])
return T
正运动学:返回齐次矩阵
源代码:
#返回齐次矩阵的正运动学
def fkine(theta,alpha,a,d):
'''
本函数用于求取n自由度机械臂正运动学
输入参数为DH参数,角度单位为rad,长度单位为mm
参数分别为theta,alpha,a,d,为1维常数值
返回齐次传递函数矩阵
'''
#关节自由度
n = len(theta)
#建立4×4的齐次传递矩阵,定义为numpy类型
An = np.eye(4)
for i in range(n):
T = trans(theta[i],alpha[i],a[i],d[i])
An = np.dot(An,T) #末端到惯性坐标系传递矩阵
return An
正运动学:返回欧拉角向量
源代码:
#输入初始时刻DH_0和相对转角,输出六维末端位姿
def fkine_euler(DH_0,qr):
'''
本函数用于求取n自由度机械臂正运动学
输入参数为DH参数,角度单位为rad,长度单位为mm
参数分别为theta,alpha,a,d,为1维常数值
返回齐次传递函数矩阵
'''
#DH参数
theta = DH_0[:, 0] + qr
alpha = DH_0[:, 1]
a = DH_0[:, 2]
d = DH_0[:, 3]
#关节自由度
n = len(theta)
xe = np.zeros(6)
#建立4×4的齐次传递矩阵,定义为numpy类型
An = np.eye(4)
for i in range(n):
T = trans(theta[i],alpha[i],a[i],d[i]) #需要加入该函数:单关节齐次矩阵
An = np.dot(An,T) #末端到惯性坐标系传递矩阵
xe[0:3] = An[0:3,3]
xe[3:6] = rot2euler_zyx(An[0:3,0:3]) #需要加入该函数:欧拉角转换函数
return xe
旋转矩阵与欧拉角转换:
#旋转矩阵转变为ZYX欧拉角
def rot2euler_zyx(Re):
'''
ZYX欧拉角速度变为姿态角速度转化矩阵
input:旋转矩阵
output:欧拉角[alpha,beta,gamma]
'''
euler_zyx = np.zeros(3)
if(abs(abs(Re[2, 0]) - 1) < math.pow(10, -6)):
if(Re[2,0] < 0):
beta = pi/2
alpha = np.arctan2(-Re[1,2],Re[1,1])
gamma = 0
else:
beta = -pi/2
alpha = -np.arctan2(-Re[1, 2], Re[1, 1])
gamma = 0
else:
p_beta = math.asin(-Re[2,0])
cb = np.cos(p_beta)
alpha = math.atan2(Re[1,0]*cb,Re[0,0]*cb)
gamma = math.atan2(Re[2,1]*cb,Re[2,2]*cb)
if((math.sin(gamma)*Re[2,1]) < 0):
beta = pi - p_beta
else:
beta = p_beta
euler_zyx[0] = alpha
euler_zyx[1] = beta
euler_zyx[2] = gamma
for i in range(3):
if(euler_zyx[i]>=3.14 or euler_zyx[i]<=-3.14):
euler_zyx[i] = 0.0
return euler_zyx
求雅可比矩阵
源代码:
(1) 便于理解版
#构造法求雅克比矩阵,时间0.3ms
def jacobian(DH_0,qr):
'''
本函数用于求取机械臂的雅克比矩阵
input:DH_0参数,长度单位mm,角度单位red
qr,相对初始位置的转角
output:J,该位置点的雅克比矩阵
'''
n = len(qr)
theta = DH_0[:,0] + qr
alpha = DH_0[:,1]
a = DH_0[:,2]
d = DH_0[:,3]
#求取末端位置
An = fkine(theta,alpha,a,d) #正运动学函数
p_n = An[0:3,3]
J = np.zeros([6,n])
J[3:6,n-1] = An[0:3,2]
#求取其余转轴方向及位置点
Ai = np.eye(4)
for i in range(n-1):
z_i = Ai[0:3,2]
p_i = Ai[0:3,3]
p_in = p_n - p_i
J[0:3,i] = np.cross(z_i,p_in)
J[3:6,i] = z_i
Ai = np.dot(Ai, trans(theta[i], alpha[i], a[i], d[i]))
return J
(2) 高速计算版
#运行时间更快0.1ms
def jeco_0(DH_0, qr):
'''
本函数基于雅克比迭代求解n自由度机械臂逆运动学方程
input:DH_0 = [q_init,alpha,a,d];
q_ready是上一时刻的位置,单位:弧度;
T0e为DH坐标系确定的DH{0}坐标系与DH{6}之间的关系(目标矩阵);
efs求解误差阀值,默认值10^(-10)
i_limit迭代最大次数,默认值1000
output:qq为相对与DH_q0的转动角度,单位:弧度;已处理到[-pi, pi] 之间
'''
#建立初时刻迭代初值
q = DH_0[:,0] + qr
alpha = DH_0[:,1]
a = DH_0[:,2]
d = DH_0[:,3]
#计数及标签
n = len(q)
#计算雅克比矩阵
U = np.eye(4)
Jn = np.zeros([6,n])
T = np.zeros([4,4,n])
for i in range(n):
i = n - i - 1
T[:,:,i] = trans(q[i],alpha[i],a[i],d[i])#单关节传递函数
U = np.dot(T[:,:,i],U)
dd = np.array([-U[0,0]*U[1,3] + U[1,0]*U[0,3],
-U[0,1]*U[1,3] + U[1,1]*U[0,3],
-U[0,2]*U[1,3] + U[1,2]*U[0,3]])
Jn[0:3,i] = dd
Jn[3:6,i] = U[2,0:3]
An = fkine(q,alpha,a,d) #正运动学函数
R = An[0:3,0:3]
J_R = np.zeros([6,6])
J_R[0:3,0:3] = R
J_R[3:6,3:6] = R
J0 = np.dot(J_R,Jn)
return J0
求机械臂逆运动学
源代码:
#***基于雅克比矩阵迭代求解逆运动学***#
def iterate_ikine(DH_0, q_ready, T0e, efs = pow(10,-12), i_max = 1000):
'''
本函数基于雅克比迭代求解n自由度机械臂逆运动学方程
input:DH_0 = [q_init,alpha,a,d];
q_ready是上一时刻的位置,单位:弧度;
T0e为DH坐标系确定的DH{0}坐标系与DH{6}之间的关系(目标矩阵);
efs求解误差阀值,默认值10^(-10)
i_limit迭代最大次数,默认值1000
output:qq为相对与DH_q0的转动角度,单位:弧度;已处理到[-pi, pi] 之间
'''
#建立初时刻迭代初值
q_r = DH_0[:,0] + q_ready
alpha = DH_0[:,1]
a = DH_0[:,2]
d = DH_0[:,3]
#计数及标签
n = len(q_r)
deltaQ = 1
temp_count = 0
#迭代循环求解
while (deltaQ > efs):
#求解正运动学
An = np.eye(4)
T = np.zeros([4,4,n])
for i in range(n):
T[:,:,i] = trans(q_r[i],alpha[i],a[i],d[i])
An = np.dot(An,T[:,:,i])
#计算末端误差
dA = np.zeros(6)
dA[0:3] = T0e[0:3,3] - An[0:3,3]
dA[3:6] = 0.5*(np.cross(An[0:3,0],T0e[0:3,0]) + np.cross(An[0:3,1],T0e[0:3,1])
+ np.cross(An[0:3,2],T0e[0:3,2]))
#print dA
#计算雅克比矩阵
U = np.eye(4)
Jn = np.zeros([6,n])
for i in range(n):
i = n - i - 1
U = np.dot(T[:,:,i],U)
dd = np.array([ -U[0,0]*U[1,3] + U[1,0]*U[0,3],
-U[0,1]*U[1,3] + U[1,1]*U[0,3],
-U[0,2]*U[1,3] + U[1,2]*U[0,3]])
Jn[0:3,i] = dd
Jn[3:6,i] = U[2,0:3]
R = An[0:3,0:3]
J_R = np.zeros([6,6])
J_R[0:3,0:3] = R
J_R[3:6,3:6] = R
J0 = np.dot(J_R,Jn)
#求取关节角关节角度偏差值
dq = np.dot(np.linalg.pinv(J0),dA)
q_r = q_r + dq
deltaQ = np.linalg.norm(dq)
temp_count =temp_count + 1
if (temp_count > i_max):
print("Solution wouldn't converge")
return q_ready
q_tmp = q_r - DH_0[:,0]
q = bf.qq_choose(q_tmp) #选择函数
return q
关节角选择函数:
#将关节角计算到正负pi
def qq_choose(qq):
'''
本函数用于选着关节角范围
input:qq为计算出的关节角
output:q关节角范围[-pi,pi]
'''
n = len(qq)
q = np.copy(qq)
for i in range(n):
while (q[i] > pi):
q[i] = q[i] - 2*pi
while (q[i] < - pi):
q[i] = q[i] + 2*pi
return q
合成通用运动学类
源代码:
#==========================通用运动学类======================#
class GeneralKinematic(object):
'''
函数依赖math和numpy
'''
def __init__(self, DH_0,q_min=rp.q_min, q_max=rp.q_max):
self.DH_0 = DH_0
self.theta = DH_0[:, 0]
self.alpha = DH_0[:, 1]
self.a = DH_0[:, 2]
self.d = DH_0[:, 3]
self.q_min = q_min
self.q_max = q_max
self.n = len(self.theta)
#相邻关节传递矩阵
def trans(self, theta, alpha, a, d):
T = np.array([[math.cos(theta), -math.sin(theta) * math.cos(alpha),
math.sin(theta) * math.sin(alpha), a * math.cos(theta)],
[math.sin(theta), math.cos(theta) * math.cos(alpha),
-math.cos(theta) * math.sin(alpha), a * math.sin(theta)],
[0, math.sin(alpha), math.cos(alpha), d],
[0, 0, 0, 1]])
return T
# ZYX欧拉角转变为旋转矩阵
def euler_zyx2rot(self,phi):
'''
ZYX欧拉角转变为旋转矩阵
input:欧拉角
output:旋转矩阵
'''
R = np.array([[np.cos(phi[0]) * np.cos(phi[1]),np.cos(phi[0]) * np.sin(phi[1]) * np.sin(phi[2]) - np.sin(phi[0]) * np.cos(phi[2]),
np.cos(phi[0]) * np.sin(phi[1]) * np.cos(phi[2]) + np.sin(phi[0]) * np.sin(phi[2])],
[np.sin(phi[0]) * np.cos(phi[1]),np.sin(phi[0]) * np.sin(phi[1]) * np.sin(phi[2]) + np.cos(phi[0]) * np.cos(phi[2]),
np.sin(phi[0]) * np.sin(phi[1]) * np.cos(phi[2]) - np.cos(phi[0]) * np.sin(phi[2])],
[-np.sin(phi[0]), np.cos(phi[1]) * np.sin(phi[2]), np.cos(phi[1]) * np.cos(phi[2])]])
return R
# 旋转矩阵转变为ZYX欧拉角
def rot2euler_zyx(self, Re):
'''
ZYX欧拉角速度变为姿态角速度转化矩阵
input:旋转矩阵
output:欧拉角[alpha,beta,gamma]
'''
euler_zyx = np.zeros(3)
if(abs(abs(Re[2, 0]) - 1) < math.pow(10, -6)):
if(Re[2,0] < 0):
beta = pi/2
alpha = np.arctan2(-Re[1,2],Re[1,1])
gamma = 0
else:
beta = -pi/2
alpha = -np.arctan2(-Re[1, 2], Re[1, 1])
gamma = 0
else:
p_beta = math.asin(-Re[2,0])
cb = np.cos(p_beta)
alpha = math.atan2(Re[1,0]*cb,Re[0,0]*cb)
gamma = math.atan2(Re[2,1]*cb,Re[2,2]*cb)
if((math.sin(gamma)*Re[2,1]) < 0):
beta = pi - p_beta
else:
beta = p_beta
euler_zyx[0] = alpha
euler_zyx[1] = beta
euler_zyx[2] = gamma
for i in range(3):
if(euler_zyx[i]>=3.14 or euler_zyx[i]<=-3.14):
euler_zyx[i] = 0.0
return euler_zyx
# 将关节角计算到正负pi
def qq_choose(self, qq):
'''
本函数用于选着关节角范围
input:qq为计算出的关节角
output:q关节角范围[-pi,pi]
'''
q = np.copy(qq)
for i in range(self.n):
while (q[i] > math.pi):
q[i] = q[i] - 2 * math.pi
while (q[i] < - math.pi):
q[i] = q[i] + 2 * math.pi
return q
#正运动学,返回齐次矩阵
def fkine(self, qr):
An = np.eye(4)
for i in range(self.n):
T = self.trans(self.theta[i] + qr[i], self.alpha[i], self.a[i], self.d[i])
An = np.dot(An, T) # 末端到惯性坐标系传递矩阵
return An
#正运动学,输出六维末端位姿,姿态用zyx欧拉角表示
def fkine_euler(self, qr):
xe = np.zeros(6)
An = np.eye(4)
for i in range(self.n):
T = self.trans(self.theta[i] + qr[i], self.alpha[i], self.a[i], self.d[i])
An = np.dot(An, T) # 末端到惯性坐标系传递矩阵
xe[0:3] = An[0:3, 3]
xe[3:6] = self.rot2euler_zyx(An[0:3, 0:3])
return xe
#求取雅克比矩阵
def jeco(self, qr):
# 计算雅克比矩阵
U = np.eye(4)
Jn = np.zeros([6, self.n])
T = np.zeros([4, 4, self.n])
for i in range(self.n):
i = self.n - i - 1
T[:, :, i] = self.trans(self.theta[i] + qr[i], self.alpha[i], self.a[i], self.d[i])
U = np.dot(T[:, :, i], U)
dd = np.array([-U[0, 0] * U[1, 3] + U[1, 0] * U[0, 3],
-U[0, 1] * U[1, 3] + U[1, 1] * U[0, 3],
-U[0, 2] * U[1, 3] + U[1, 2] * U[0, 3]])
Jn[0:3, i] = dd
Jn[3:6, i] = U[2, 0:3]
An = self.fkine(qr)
R = An[0:3, 0:3]
J_R = np.zeros([6, 6])
J_R[0:3, 0:3] = R
J_R[3:6, 3:6] = R
J0 = np.dot(J_R, Jn)
return J0
# ***基于雅克比矩阵迭代求解逆运动学***#
def iterate_ikine(self, q_guess, Te, efs=pow(10, -12), i_max=1000):
'''
本函数基于雅克比迭代求解n自由度机械臂逆运动学方程
q_ready是上一时刻的位置,单位:弧度;
T0e为DH坐标系确定的DH{0}坐标系与DH{6}之间的关系(目标矩阵);
efs求解误差阀值,默认值10^(-10)
i_limit迭代最大次数,默认值1000
output:qq为相对与DH_q0的转动角度,单位:弧度;已处理到[-pi, pi] 之间
'''
# 建立初时刻迭代初值
q_r =self.theta + q_guess
# 计数及标签
deltaQ = 1
temp_count = 0
# 迭代循环求解
while (deltaQ > efs):
# 求解正运动学
An = np.eye(4)
T = np.zeros([4, 4, self.n])
for i in range(self.n):
T[:, :, i] = self.trans(q_r[i], self.alpha[i], self.a[i], self.d[i])
An = np.dot(An, T[:, :, i])
# 计算末端误差
dA = np.zeros(6)
dA[0:3] = Te[0:3, 3] - An[0:3, 3]
dA[3:6] = 0.5 * (np.cross(An[0:3, 0], Te[0:3, 0]) + np.cross(An[0:3, 1], Te[0:3, 1])
+ np.cross(An[0:3, 2], Te[0:3, 2]))
# 计算雅克比矩阵
U = np.eye(4)
Jn = np.zeros([6, self.n])
for i in range(self.n):
i = self.n - i - 1
U = np.dot(T[:, :, i], U)
dd = np.array([-U[0, 0] * U[1, 3] + U[1, 0] * U[0, 3],
-U[0, 1] * U[1, 3] + U[1, 1] * U[0, 3],
-U[0, 2] * U[1, 3] + U[1, 2] * U[0, 3]])
Jn[0:3, i] = dd
Jn[3:6, i] = U[2, 0:3]
R = An[0:3, 0:3]
J_R = np.zeros([6, 6])
J_R[0:3, 0:3] = R
J_R[3:6, 3:6] = R
J0 = np.dot(J_R, Jn)
# 求取关节角关节角度偏差值
dq = np.dot(np.linalg.pinv(J0), dA)
q_r = q_r + dq
deltaQ = np.linalg.norm(dq)
temp_count = temp_count + 1
if (temp_count > i_max):
print("Solution wouldn't converge")
return q_guess
q_tmp = q_r - self.theta
q = self.qq_choose(q_tmp)
return q
#机械臂关节极限判断,返回值为0或1
def exceed_joint_limit(self, qq, q_min, q_max):
'''
判断关节角是否超出限制
input:关节角,关节角范围
outpu:0,未超出,1超出
'''
n = len(qq)
limit = False
for i in range(n):
if((qq[i] < q_min[i]) or (qq[i] > q_max[i])):
print "第", i+1, "关节超出极限:", qq[i]*180/np.pi
limit = True
break
return limit
#带关节限制
def iterate_ikine_limit_xyz(self, q_guess, Xe):
Te = np.eye(4)
Te[0:3, 0:3] = self.euler_zyx2rot(Xe[3:])
Te[0:3, 3] = Xe[:3]
print "Te:", Te
qr = self.iterate_ikine(q_guess, Te)
flag = self.exceed_joint_limit(qr ,self.q_min, self.q_max)
if(flag):
#print "flag:", flag
qr = np.copy(q_guess)
return qr
# 带关节限制
def iterate_ikine_limit(self, q_guess, Te):
qr = self.iterate_ikine(q_guess, Te)
flag = self.exceed_joint_limit(qr, self.q_min, self.q_max)
if (flag):
# print "flag:", flag
qr = np.copy(q_guess)
return qr
标签:DH,self,运动学,数值,-----,theta,np,alpha,math 来源: https://blog.csdn.net/weixin_43956732/article/details/111414009