其他分享
首页 > 其他分享> > 2020-12-03

2020-12-03

作者:互联网

prime 算法解析

在这里插入图片描述
*在这里插入图片描述## 标题*

在这里插入图片描述

package prime;

import java.util.Arrays;

public class PrimAlgorithm {
	public static void main(String[] args) {

		// 测试看看图是否创建ok
		char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int verxs = data.length;
		// 邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
		int[][] weight = new int[][] { { 10000, 5, 7, 10000, 10000, 10000, 2 }, { 5, 10000, 10000, 9, 10000, 10000, 3 },
				{ 7, 10000, 10000, 10000, 8, 10000, 10000 }, { 10000, 9, 10000, 10000, 10000, 4, 10000 },
				{ 10000, 10000, 8, 10000, 10000, 5, 4 }, { 10000, 10000, 10000, 4, 5, 10000, 6 },
				{ 2, 3, 10000, 10000, 4, 6, 10000 }, };

		// 创建MGraph对象
		MGraph graph = new MGraph(verxs);
		// 创建一个MinTree对象
		MinTree minTree = new MinTree();
		minTree.createGraph(graph, verxs, data, weight);
		// 输出
		minTree.showGraph(graph);
		// 测试普利姆算法
		minTree.prim(graph, 1);//

	}

}

class MinTree {// 创建最小生成树
	// 创建图的邻接矩阵
	/**
	 * 
	 * @param graph  图对象
	 * @param verxs  图对应的顶点个数
	 * @param data   图的各个顶点的值
	 * @param weight 图的邻接矩阵
	 */
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for (i = 0; i < verxs; i++) {// 顶点
			graph.data[i] = data[i];
			for (j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}

	// 显示图的邻接矩阵
	public void showGraph(MGraph graph) {
		for (int[] link : graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}

	// 编写prim算法,得到最小生成树
	/**
	 * 
	 * @param graph 图
	 * @param v     表示从图的第几个顶点开始生成'A'->0 'B'->1...
	 */
	public void prim(MGraph graph, int v) {
		// visited[] 标记结点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		// visited[] 默认元素的值都是0, 表示没有访问过
//		for(int i =0; i <graph.verxs; i++) {
//			visited[i] = 0;
//		}

		// 把当前这个结点标记为已访问
		visited[v] = 1;
		// h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000; // 将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
		for (int k = 1; k < graph.verxs; k++) {// 因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边

			// 这个是确定每一次生成的子图 ,和哪个结点的距离最近
			for (int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
				for (int j = 0; j < graph.verxs; j++) {// j结点表示还没有访问过的结点
					if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						// 替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			// 找到一条边是最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
			// 将当前这个结点标记为已经访问
			visited[h2] = 1;
			// minWeight 重新设置为最大值 10000
			minWeight = 10000;
		}

	}
}

class MGraph {

	int verxs; // 表示图的节点个数
	char[] data; // 存放结点数据
	int[][] weight;// 存边 就是我们的邻接矩阵

	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

在这里插入图片描述

标签:03,结点,12,10000,weight,int,graph,verxs,2020
来源: https://blog.csdn.net/m0_43452957/article/details/110531879