赛事学习-零基础入门推荐系统-新闻推荐(二)
作者:互联网
这部分主要是学习这一类任务的数据分析方法,其次就是pandas的使用,感觉pandas要是用不好,数据根本就分析不起来。这一节就直接把学习的代码放上来吧!以后有了新的经验了再来总结。
数据分析
# 导入相关包
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rc('font', family='SimHei', size=13)
import os,gc,re,warnings,sys
warnings.filterwarnings("ignore")
读取数据
path = '../data/'
#####train
trn_click = pd.read_csv(path+'train_click_log.csv')
#trn_click = pd.read_csv(path+'train_click_log.csv', names=['user_id','item_id','click_time','click_environment','click_deviceGroup','click_os','click_country','click_region','click_referrer_type'])
item_df = pd.read_csv(path+'articles.csv')
item_df = item_df.rename(columns={'article_id': 'click_article_id'}) #重命名,方便后续match
item_emb_df = pd.read_csv(path+'articles_emb.csv')
#####test
tst_click = pd.read_csv(path+'testA_click_log.csv')
数据预处理
计算用户点击rank和点击次数
# 对每个用户的点击时间戳进行排序
trn_click['rank'] = trn_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
tst_click['rank'] = tst_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
#计算用户点击文章的次数,并添加新的一列count
trn_click['click_cnts'] = trn_click.groupby(['user_id'])['click_timestamp'].transform('count')
tst_click['click_cnts'] = tst_click.groupby(['user_id'])['click_timestamp'].transform('count')
数据浏览
用户点击日志文件_训练集
trn_click = trn_click.merge(item_df, how='left', on=['click_article_id'])
trn_click.head()
train_click_log.csv文件数据中每个字段的含义
- user_id: 用户的唯一标识
- click_article_id: 用户点击的文章唯一标识
- click_timestamp: 用户点击文章时的时间戳
- click_environment: 用户点击文章的环境
- click_deviceGroup: 用户点击文章的设备组
- click_os: 用户点击文章时的操作系统
- click_country: 用户点击文章时的所在的国家
- click_region: 用户点击文章时所在的区域
- click_referrer_type: 用户点击文章时,文章的来源
#用户点击日志信息
trn_click.info()
trn_click.describe()
#训练集中的用户数量为20w
trn_click.user_id.nunique()
trn_click.groupby('user_id')['click_article_id'].count().min() # 训练集里面每个用户至少点击了两篇文章
画直方图大体看一下基本的属性分布
plt.figure()
plt.figure(figsize=(15, 20))
i = 1
for col in ['click_article_id', 'click_timestamp', 'click_environment', 'click_deviceGroup', 'click_os', 'click_country',
'click_region', 'click_referrer_type', 'rank', 'click_cnts']:
plot_envs = plt.subplot(5, 2, i)
i += 1
v = trn_click[col].value_counts().reset_index()[:10]
fig = sns.barplot(x=v['index'], y=v[col])
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.title(col)
plt.tight_layout()
plt.show()
测试集用户点击日志
tst_click = tst_click.merge(item_df, how='left', on=['click_article_id'])
tst_click.head()
tst_click.describe()
#测试集中的用户数量为5w
tst_click.user_id.nunique()
tst_click.groupby('user_id')['click_article_id'].count().min() # 注意测试集里面有只点击过一次文章的用户
新闻文章信息数据表
#新闻文章数据集浏览
item_df.head().append(item_df.tail())
item_df['words_count'].value_counts()
print(item_df['category_id'].nunique()) # 461个文章主题
item_df['category_id'].hist()
item_df.shape # 364047篇文章
item_emb_df.head()
item_emb_df.shape
数据分析
#####merge
user_click_merge = trn_click.append(tst_click)
#用户重复点击
user_click_count = user_click_merge.groupby(['user_id', 'click_article_id'])['click_timestamp'].agg({'count'}).reset_index()
user_click_count[:10]
user_click_count[user_click_count['count']>7]
user_click_count['count'].unique()
#用户点击新闻次数
user_click_count.loc[:,'count'].value_counts()
def plot_envs(df, cols, r, c):
plt.figure()
plt.figure(figsize=(10, 5))
i = 1
for col in cols:
plt.subplot(r, c, i)
i += 1
v = df[col].value_counts().reset_index()
fig = sns.barplot(x=v['index'], y=v[col])
for item in fig.get_xticklabels():
item.set_rotation(90)
plt.title(col)
plt.tight_layout()
plt.show()
# 分析用户点击环境变化是否明显,这里随机采样10个用户分析这些用户的点击环境分布
sample_user_ids = np.random.choice(tst_click['user_id'].unique(), size=10, replace=False)
sample_users = user_click_merge[user_click_merge['user_id'].isin(sample_user_ids)]
cols = ['click_environment','click_deviceGroup', 'click_os', 'click_country', 'click_region','click_referrer_type']
for _, user_df in sample_users.groupby('user_id'):
plot_envs(user_df, cols, 2, 3)
user_click_item_count = sorted(user_click_merge.groupby('user_id')['click_article_id'].count(), reverse=True)
plt.plot(user_click_item_count)
#点击次数在前50的用户
plt.plot(user_click_item_count[:50])
#点击次数排名在[25000:50000]之间
plt.plot(user_click_item_count[25000:50000])
item_click_count = sorted(user_click_merge.groupby('click_article_id')['user_id'].count(), reverse=True)
plt.plot(item_click_count)
plt.plot(item_click_count[:100])
plt.plot(item_click_count[:20])
plt.plot(item_click_count[3500:])
tmp = user_click_merge.sort_values('click_timestamp')
tmp['next_item'] = tmp.groupby(['user_id'])['click_article_id'].transform(lambda x:x.shift(-1))
union_item = tmp.groupby(['click_article_id','next_item'])['click_timestamp'].agg({'count'}).reset_index().sort_values('count', ascending=False)
union_item[['count']].describe()
#画个图直观地看一看
x = union_item['click_article_id']
y = union_item['count']
plt.scatter(x, y)
plt.plot(union_item['count'].values[40000:])
#不同类型的新闻出现的次数
plt.plot(user_click_merge['category_id'].value_counts().values)
#出现次数比较少的新闻类型, 有些新闻类型,基本上就出现过几次
plt.plot(user_click_merge['category_id'].value_counts().values[150:])
#新闻字数的描述性统计
user_click_merge['words_count'].describe()
plt.plot(user_click_merge['words_count'].values)
用户点击的新闻类型的偏好
此特征可以用于度量用户的兴趣是否广泛。
plt.plot(sorted(user_click_merge.groupby('user_id')['category_id'].nunique(), reverse=True))
user_click_merge.groupby('user_id')['category_id'].nunique().reset_index().describe()
用户查看文章的长度的分布
通过统计不同用户点击新闻的平均字数,这个可以反映用户是对长文更感兴趣还是对短文更感兴趣。
plt.plot(sorted(user_click_merge.groupby('user_id')['words_count'].mean(), reverse=True))
#挑出大多数人的区间仔细看看
plt.plot(sorted(user_click_merge.groupby('user_id')['words_count'].mean(), reverse=True)[1000:45000])
#更加详细的参数
user_click_merge.groupby('user_id')['words_count'].mean().reset_index().describe()
用户点击新闻的时间分析
#为了更好的可视化,这里把时间进行归一化操作
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
user_click_merge['click_timestamp'] = mm.fit_transform(user_click_merge[['click_timestamp']])
user_click_merge['created_at_ts'] = mm.fit_transform(user_click_merge[['created_at_ts']])
user_click_merge = user_click_merge.sort_values('click_timestamp')
user_click_merge.head()
def mean_diff_time_func(df, col):
df = pd.DataFrame(df, columns={col})
df['time_shift1'] = df[col].shift(1).fillna(0)
df['diff_time'] = abs(df[col] - df['time_shift1'])
return df['diff_time'].mean()
# 点击时间差的平均值
mean_diff_click_time = user_click_merge.groupby('user_id')['click_timestamp', 'created_at_ts'].apply(lambda x: mean_diff_time_func(x, 'click_timestamp'))
plt.plot(sorted(mean_diff_click_time.values, reverse=True))
# 前后点击文章的创建时间差的平均值
mean_diff_created_time = user_click_merge.groupby('user_id')['click_timestamp', 'created_at_ts'].apply(lambda x: mean_diff_time_func(x, 'created_at_ts'))
plt.plot(sorted(mean_diff_created_time.values, reverse=True))
# 用户前后点击文章的相似性分布
item_idx_2_rawid_dict = dict(zip(item_emb_df['article_id'], item_emb_df.index))
del item_emb_df['article_id']
item_emb_np = np.ascontiguousarray(item_emb_df.values, dtype=np.float32)
# 随机选择5个用户,查看这些用户前后查看文章的相似性
sub_user_ids = np.random.choice(user_click_merge.user_id.unique(), size=15, replace=False)
sub_user_info = user_click_merge[user_click_merge['user_id'].isin(sub_user_ids)]
sub_user_info.head()
def get_item_sim_list(df):
sim_list = []
item_list = df['click_article_id'].values
for i in range(0, len(item_list)-1):
emb1 = item_emb_np[item_idx_2_rawid_dict[item_list[i]]]
emb2 = item_emb_np[item_idx_2_rawid_dict[item_list[i+1]]]
sim_list.append(np.dot(emb1,emb2)/(np.linalg.norm(emb1)*(np.linalg.norm(emb2))))
sim_list.append(0)
return sim_list
for _, user_df in sub_user_info.groupby('user_id'):
item_sim_list = get_item_sim_list(user_df)
plt.plot(item_sim_list)
总结
通过数据分析的过程, 我们目前可以得到以下几点重要的信息, 这个对于我们进行后面的特征制作和分析非常有帮助:
- 训练集和测试集的用户id没有重复,也就是测试集里面的用户没有模型是没有见过的
- 训练集中用户最少的点击文章数是2, 而测试集里面用户最少的点击文章数是1
- 用户对于文章存在重复点击的情况, 但这个都存在于训练集里面
- 同一用户的点击环境存在不唯一的情况,后面做这部分特征的时候可以采用统计特征
- 用户点击文章的次数有很大的区分度,后面可以根据这个制作衡量用户活跃度的特征
- 文章被用户点击的次数也有很大的区分度,后面可以根据这个制作衡量文章热度的特征
- 用户看的新闻,相关性是比较强的,所以往往我们判断用户是否对某篇文章感兴趣的时候, 在很大程度上会和他历史点击过的文章有关
- 用户点击的文章字数有比较大的区别, 这个可以反映用户对于文章字数的区别
- 用户点击过的文章主题也有很大的区别, 这个可以反映用户的主题偏好
10.不同用户点击文章的时间差也会有所区别, 这个可以反映用户对于文章时效性的偏好
标签:count,入门,df,推荐,id,item,user,赛事,click 来源: https://blog.csdn.net/qq_41936559/article/details/110249139