POJ 1306 Combinations
作者:互联网
Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following:
GIVEN: 5 <= N <= 100; 5 <= M <= 100; M <= N
Compute the EXACT value of: C = N! / (N-M)!M!
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a C long. For the record, the exact value of 100! is:
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000
N things taken M at a time is C exactly.
GIVEN: 5 <= N <= 100; 5 <= M <= 100; M <= N
Compute the EXACT value of: C = N! / (N-M)!M!
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a C long. For the record, the exact value of 100! is:
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000
Input
The input to this program will be one or more lines each containing zero or more leading spaces, a value for N, one or more spaces, and a value for M. The last line of the input file will contain a dummy N, M pair with both values equal to zero. Your program should terminate when this line is read.Output
The output from this program should be in the form:N things taken M at a time is C exactly.
Sample Input
100 6 20 5 18 6 0 0
Sample Output
100 things taken 6 at a time is 1192052400 exactly. 20 things taken 5 at a time is 15504 exactly. 18 things taken 6 at a time is 18564 exactly.
读完题目发现 这是一道求排列组合的。但是公式已经给出。所以也就是求公式的值。
直接使用double是可以通过的。我这里给一个延展答案。就是如果数据量真的特别大大,double也放不下的那种长度的做法。
用string计算乘法,使用辗转相除法进行约分。
注释写得比较详细,请参考代码。
简答double 和复杂计算都有, 因为参加过一次考试,和这个题目比较类似。用的比较大的数据量计算。特别遗憾。在此记录
double
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; public class POJ1306{ public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); while (br.ready()) { StringTokenizer st = new StringTokenizer(br.readLine()); double N = Integer.parseInt(st.nextToken()); double M = Integer.parseInt(st.nextToken()); if(N == 0 && M == 0) break; double ans = 1; int idx = 0; for (double i = N; i > 0 ; i--) { ans *= i; idx++; if(idx == M) break; } for (double i = M; i > 0 ; i--) { ans /= i; } System.out.println(String.format("%.0f things taken %.0f at a time is %.0f exactly.", N, M, ans)); } } }
用string计算乘法, 超详细注释
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; // C = N! / (N-M)!M! 通过约分 == (N*N-1*...*N-M+1) / M! public class VjudgeJ2 { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); while (br.ready()) { StringTokenizer st = new StringTokenizer(br.readLine()); int N = Integer.parseInt(st.nextToken()); // 总共的数据 int M = Integer.parseInt(st.nextToken()); // 挑选的数据 if(N == 0 && M == 0) break; int[] fenzi = new int[N]; //公式的分子 int[] fenmu = new int[N]; //公式的分母 int idx = 0; // 存出分子分母数组的索引 for (int i = N; i > N - M ; i--) { fenzi[idx++] = i; } idx = 0; for (int i = M; i > 0 ; i--) { fenmu[idx++] = i; } // 寻找最大公约数 while (true) { boolean isEnd = true; // 不能继续进行约分 for (int i = 0; i < idx; i++) { // 遍历分子分母 for (int j = 0; j < idx; j++) { int gdc = gdc(fenzi[i], fenmu[j]); // 辗转相除寻找最大公约数 if(gdc != 1) { // 找到的结果不等于1 可以进行约分 fenzi[i] /= gdc; fenmu[j] /= gdc; isEnd = false; } } } if(isEnd) break; // 当无法约分时跳出循环 } String ans = "1"; for (int i = 0; i < idx; i++) { ans = mult(fenzi[i]+"", ans); // 因为此题目特殊分母最后总是1,所以只需要相乘分子 } // %d是数字 %s是字符串 %.0f是浮点型 System.out.println(String.format("%d things taken %d at a time is %s exactly.", N, M, ans)); } } // 辗转相除法。如果大数不能整除小数,则小数和余数的整除时,小数就是他们的最大公约数 private static int gdc(int a, int b) { if(a > b){ int r = a % b; if(r == 0) return b; return gdc(b, r); } int r = b % a; if(r == 0) return a; return gdc(a, r); } // 大整数相乘 private static String mult(String a, String b) { // 整数转换数组 char[] aarr = a.toCharArray(); char[] barr = b.toCharArray(); // 分别存储长度整数数组 char[] bigArr = aarr.length > barr.length ? aarr : barr; char[] smallArr = aarr.length > barr.length ? barr : aarr; // 模仿真正的乘法。midSum存储,相乘过程中的结果。 int[][] midSum = new int[smallArr.length][a.length()+b.length()]; // 模相乘过程中的结果进行叠加就是真正的值。 int[] sum = new int[a.length()+b.length()]; // 循环两个整数,从索引最大的开始,因为数字相乘从右到左进行 for (int i = smallArr.length-1; i >= 0; i--) { int row = smallArr.length - 1 - i; for (int j = bigArr.length - 1; j >= 0; j--) { // 因为是char我们需要转换为int int v = Integer.parseInt(smallArr[i]+"") * Integer.parseInt(bigArr[j]+""); // 计算当相乘的结果应该放置过程数组的第几位。应该是两者所在位置相加 // 例如 10 * 10 计算时候 1*1 = 1 但是字符1的位置都是1,所以结果应该向前进两位变成100。 int col = bigArr.length - j - 1 + smallArr.length - i - 1; midSum[row][col] += v; // 需要和本身位置的值进行相加,之前进过来的树需要累加 int tem = col; // 如果结果大于9 需要继续向前进位。while循环进位。 因为有 ..9999这种情况 while (midSum[row][tem] > 9) { int tv = midSum[row][tem]; midSum[row][tem] = tv % 10; midSum[row][tem+1] += tv / 10; tem+=1; } } } // 循环累加结果 for (int i = 0; i < bigArr.length + smallArr.length; i++) { for (int j = 0; j < smallArr.length; j++) { sum[i] += midSum[j][i]; // 我们需要行循环,列进行累加。所以内层循环用小数组。 int tem = sum[i]; int col = i; // 累加 如果结果大于9 需要继续向前进位。while循环进位。 因为有 ..9999这种情况 while (tem > 9) { sum[col] = tem % 10; sum[col+1] += tem / 10; tem = sum[col+1]; col+=1; } } } // 将数组位数的值转为字符串 StringBuilder sb = new StringBuilder(); boolean isT = false; for (int i = bigArr.length + smallArr.length-1; i >=0; i--) { if(sum[i] != 0) isT = true; if(isT) sb.append(sum[i]); } return sb.toString(); } }
标签:1306,tem,idx,int,smallArr,length,POJ,Combinations,new 来源: https://www.cnblogs.com/ives-xu/p/13744307.html