1143. Longest Common Subsequence
作者:互联网
问题:
给定两个字符串,求他们的最长公共子序列的长度。
Example 1: Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3. Example 2: Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3. Example 3: Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0. Constraints: 1 <= text1.length <= 1000 1 <= text2.length <= 1000 The input strings consist of lowercase English characters only.
解法:DP(动态规划)
1.确定【状态】:
- 字符串text1的第i个字符:text1[i]
- 字符串text2的第j个字符:text2[j]
2.确定【选择】:分两种情况
- text1[i] == text2[j]:
- 前一个字符状态(公共序列长度)+1: dp[i-1][j-1] + 1
- text1[i] != text2[j]:有以下3种情况,取最大值。
- 只有text1[i]是最终公共子序列的一个字符 -> =上一个包含text1[i]而不包含text2[j]的字符状态:dp[i][j-1]
- 只有text2[j]是最终公共子序列的一个字符 -> =上一个不包含text1[i]而包含text2[j]的字符状态:dp[i-1][j]
- 两个字符都不是最终公共子序列的一个字符 -> =上一个既不包含text1[i]又不包含text2[j]的字符状态:dp[i-1][j-1]
- ★由于dp[i-1][j-1]一定<=dp[i][j-1] or dp[i-1][j],因此可以省略比较dp[i-1][j-1]
3. dp[i][j]的含义:
对比到text1的第 i 个字符,text2的第 j 个字符为止,两个字符串的最大公共子序列长度。
4. 状态转移:
dp[i][j]=
- (text1[i] == text2[j]):=前一个字符状态+1:dp[i-1][j-1] + 1
- (text1[i] != text2[j]):=max {
- 上一个包含text1[i]字符的状态:dp[i][j-1]
- 上一个包含text2[j]字符的状态:dp[i-1][j]
- 上一个text1[i]text2[j]都不包含的状态:dp[i-1][j-1](★可省略) }
5. base case:
- dp[0][j]=0:text1为空串,则其与text2的公共子序列也一定为空串,长度为0。
- dp[i][0]=0:text2为空串,则其与text1的公共子序列也一定为空串,长度为0。
代码参考:
1 class Solution { 2 public: 3 //dp[i][j]:until text1[i],text2[j]. the max length of the LCS 4 //case_1: text1[i]==text2[j]: 5 // this character must be in LCS. we need add 1 to pre status:dp[i-1][j-1]. 6 // =dp[i-1][j-1]+1 7 //case_2: text1[i]!=text2[j] 8 // text1[i] or text2[j] may in LCS. we choose the max of these possibilities. 9 // if text1[i] is in LCS, 10 // = dp[i][j-1] 11 // if text2[j] is in LCS, 12 // = dp[i-1][j] 13 // if none of them is in LCS, 14 // = dp[i-1][j-1] 15 // note: dp[i-1][j-1]<=dp[i-1][j](dp[i][j-1]) ,so we can ignore it 16 // =max(dp[i][j-1],dp[i-1][j]) 17 //base case: 18 //dp[i][0]=0 19 //dp[0][j]=0 20 int longestCommonSubsequence(string text1, string text2) { 21 int m = text1.length(), n = text2.length(); 22 vector<vector<int>> dp(m+1, vector<int>(n+1, 0)); 23 for(int i=1; i<=m; i++) { 24 for(int j=1; j<=n; j++) { 25 if(text1[i-1]==text2[j-1]) { 26 dp[i][j]=dp[i-1][j-1]+1; 27 } else { 28 dp[i][j]=max(dp[i-1][j], dp[i][j-1]); 29 } 30 } 31 } 32 return dp[m][n]; 33 } 34 };
♻️ 优化:
空间复杂度:2维->1维
去掉 i
压缩所有行到一行。
左上角dp[i-1][j-1]会被下面的dp[i][j-1]覆盖,因此引入变量pre,在更新dp[i][j-1]之前,保存dp[i-1][j-1]
代码参考:
1 class Solution { 2 public: 3 int longestCommonSubsequence(string text1, string text2) { 4 int m = text1.length(), n = text2.length(); 5 vector<int> dp(n+1, 0); 6 for(int i=1; i<=m; i++) { 7 int pre = 0; 8 for(int j=1; j<=n; j++) { 9 int tmp = dp[j]; 10 if(text1[i-1]==text2[j-1]) { 11 dp[j]=pre+1; 12 } else { 13 dp[j]=max(dp[j], dp[j-1]); 14 } 15 pre = tmp; 16 } 17 } 18 return dp[n]; 19 } 20 };
标签:1143,LCS,字符,text2,Subsequence,text1,Longest,序列,dp 来源: https://www.cnblogs.com/habibah-chang/p/13621859.html