其他分享
首页 > 其他分享> > ceph学习一之基础知识

ceph学习一之基础知识

作者:互联网

一、ceph简介

Ceph是一个可靠、自动重均衡、自动恢复的分布式存储系统,根据场景划分可以将Ceph分为三大块,分别是对象存储、块设备和文件系统服务。块设备存储是Ceph的强项。

Ceph的主要优点是分布式存储,在存储每一个数据时,都会通过计算得出该数据存储的位置,尽量将数据分布均衡,不存在传统的单点故障的问题,可以水平扩展。

Ceph存储集群至少需要一个Ceph Monitor和两个OSD守护进程。而运行Ceph文件系统客户端时,则必须要有元数据服务器(Metadata Server)。

二、ceph专业术语

OSD: OSD守护进程的功能是存储数据,处理数据的复制、恢复、回填、再均衡,并通过检查其他OSD守护进程的心跳来向Ceph Monitors 提供一些监控信息。一般情况下一块硬盘对应一个OSD,由OSD来对硬盘存储进行管理,当然一个分区也可以成为一个OSD。

Monitors: Monitor维护着展示集群状态的各种图表,包括监视器图、OSD图、归置组(PG)图、和CRUSH图。Ceph保存着发生在Monitors、OSD和PG上的每一次状态变更的历史信息(称为epoch)。

PG由于Object的数量很多,所以Ceph引入了PG的概念用于管理Object,每个Object最后都会通过CRUSH计算映射到某个PG中,一个PG可以包含多个Object。

MDSs: Ceph元数据服务器(MDS)为Ceph文件系统存储元数据(也就是说,Ceph块设备和Ceph对象存储不使用MDS)。元数据服务器使得POSIX文件系统的用户们,可以在不对 Ceph 存储集群造成负担的前提下,执行诸如 ls、find 等基本命令。

Pg和osd的关系:

 

 

 

object、pg、pool、osd、存储磁盘的关系

 

 

 

CRUSH算法:

CRUSH算法是根据存储设备的权重来计算数据对象的分布的,权重的设计可以根据该磁盘的容量和读写速度来设置,比如根据容量大小可以将1T的硬盘设备权重设为1,2T的就设为2,在计算过程中,CRUSH是根据Cluster Map、数据分布策略和一个随机数共同决定数组最终的存储位置的。

Cluster Map里的内容信息包括存储集群中可用的存储资源及其相互之间的空间层次关系,比如集群中有多少个支架,每个支架中有多少个服务器,每个服务器有多少块磁盘用以OSD等。

层级化的Cluster Map举例:

 

 

数据分布策略是指可以通过Ceph管理者通过配置信息指定数据分布的一些特点,比如管理者配置的故障域是Host,也就意味着当有一台Host起不来时,数据能够不丢失,CRUSH可以通过将每个pg的主从副本分别存放在不同Host的OSD上即可达到,不单单可以指定Host,还可以指定机架等故障域,除了故障域,还有选择数据冗余的方式,比如副本数或纠删码。

三、ceph原理

Ceph把客户端数据保存为存储池内的对象。通过使用CRUSH算法,Ceph可以计算出哪个归置组(PG)应该持有指定的对象(Object),然后进一步计算出哪个OSD守护进程持有该归置组。CRUSH算法使得Ceph存储集群能够动态地伸缩、再均衡和修复。

 

 

 

 

Ceph中的寻址至少要经历以下三次映射:

(1)       File -> object映射

将用户要操作的file,映射为RADOS能够处理的object。映射就是按照object的最大size对file进行切分,这种切分的好处有二:一是让大小不限的file变成最大size一致、可以被RADOS高效管理的object;二是让对单一file实施的串行处理变为对多个object实施的并行化处理。每一个切分后产生的object将获得唯一的oid,即object id。图中,ino是待操作file的元数据,可以简单理解为该file的唯一id。ono则是由该file切分产生的某个object的序号。那么oid=ino + ono

 

(2)       Object -> PG映射

在file被映射为一个或多个object之后,就需要将每个object独立地映射到一个PG中去。这个映射过程也很简单,如图中所示,其计算公式是:hash(oid) & mask -> pgid。首先使用静态哈希函数计算oid的哈希值,将oid映射成为一个近似均匀分布的伪随机值。然后,将这个伪随机值和mask按位相与,得到最终的PG序号(pgid)。根据RADOS的设计,给定PG的总数为m(m应该为2的整数幂),则mask的值为m-1。因此,哈希值计算和按位与操作的整体结果事实上是从所有m个PG中近似均匀地随机选择一个。基于这一机制,当有大量object和大量PG时,RADOS能够保证object和PG之间的近似均匀映射。又因为object是由file切分而来,大部分object的size相同,因而,这一映射最终保证了,各个PG中存储的object的总数据量近似均匀。

从介绍不难看出,这里反复强调了“大量”。只有当object和PG的数量较多时,这种伪随机关系的近似均匀性才能成立,Ceph的数据存储均匀性才有保证。为保证“大量”的成立,一方面,object的最大size应该被合理配置,以使得同样数量的file能够被切分成更多的object;另一方面,Ceph也推荐PG总数应该为OSD总数的数百倍,以保证有足够数量的PG可供映射。

(3)       (3)PG -> OSD映射

第三次映射就是将作为object的逻辑组织单元的PG映射到数据的实际存储单元OSD。如图所示,RADOS采用一个名为CRUSH的算法,将pgid代入其中,然后得到一组共n个OSD。这n个OSD即共同负责存储和维护一个PG中的所有object。n的数值可以根据实际应用中对于可靠性的需求而配置,在生产环境下通常为3。具体到每个OSD,则由其上运行的OSD deamon负责执行映射到本地的object在本地文件系统中的存储、访问、元数据维护等操作。

 

“object -> PG”映射中采用的哈希算法不同,这个CRUSH算法的结果不是绝对不变的,而是受到其他因素的影响。其影响因素主要有二:

 

一是当前系统状态,也就是在《“Ceph浅析”系列之四——逻辑结构》中曾经提及的cluster map。当系统中的OSD状态、数量发生变化时,cluster map可能发生变化,而这种变化将会影响到PG与OSD之间的映射。

二是存储策略配置。这里的策略主要与安全相关。利用策略配置,系统管理员可以指定承载同一个PG的3个OSD分别位于数据中心的不同服务器乃至机架上,从而进一步改善存储的可靠性。

 

因此,只有在系统状态(cluster map)和存储策略都不发生变化的时候,PG和OSD之间的映射关系才是固定不变的。在实际使用当中,策略一经配置通常不会改变。而系统状态的改变或者是由于设备损坏,或者是因为存储集群规模扩大。好在Ceph本身提供了对于这种变化的自动化支持,因而,即便PG与OSD之间的映射关系发生了变化,也并不会对应用造成困扰。事实上,Ceph正是需要有目的的利用这种动态映射关系。正是利用了CRUSH的动态特性,Ceph可以将一个PG根据需要动态迁移到不同的OSD组合上,从而自动化地实现高可靠性、数据分布re-blancing等特性。

之所以在此次映射中使用CRUSH算法,而不是其他哈希算法,原因之一正是CRUSH具有上述可配置特性,可以根据管理员的配置参数决定OSD的物理位置映射策略;另一方面是因为CRUSH具有特殊的“稳定性”,也即,当系统中加入新的OSD,导致系统规模增大时,大部分PG与OSD之间的映射关系不会发生改变,只有少部分PG的映射关系会发生变化并引发数据迁移。这种可配置性和稳定性都不是普通哈希算法所能提供的。因此,CRUSH算法的设计也是Ceph的核心内容之一。

 

Pg存在的好处:

一方面实现了object和OSD之间的动态映射,从而为Ceph的可靠性、自动化等特性的实现留下了空间;另一方面也有效简化了数据的存储组织,大大降低了系统的维护管理开销。

数据操作流程

为简化说明,便于理解,此处进行若干假定。首先,假定待写入的file较小,无需切分,仅被映射为一个object。其次,假定系统中一个PG被映射到3个OSD上。

基于上述假定,则file写入流程可以被下图表示:

 

 

 

如图所示,当某个client需要向Ceph集群写入一个file时,首先需要在本地完成5.1节中所叙述的寻址流程,将file变为一个object,然后找出存储该object的一组三个OSD。这三个OSD具有各自不同的序号,序号最靠前的那个OSD就是这一组中的Primary OSD,而后两个则依次是Secondary OSD和Tertiary OSD。找出三个OSD后,client将直接和Primary OSD通信,发起写入操作(步骤1)。Primary OSD收到请求后,分别向Secondary OSD和Tertiary OSD发起写入操作(步骤2、3)。当Secondary OSD和Tertiary OSD各自完成写入操作后,将分别向Primary OSD发送确认信息(步骤4、5)。当Primary OSD确信其他两个OSD的写入完成后,则自己也完成数据写入,并向client确认object写入操作完成(步骤6)。

之所以采用这样的写入流程,本质上是为了保证写入过程中的可靠性,尽可能避免造成数据丢失。同时,由于client只需要向Primary OSD发送数据,因此,在Internet使用场景下的外网带宽和整体访问延迟又得到了一定程度的优化。

当然,这种可靠性机制必然导致较长的延迟,特别是,如果等到所有的OSD都将数据写入磁盘后再向client发送确认信号,则整体延迟可能难以忍受。因此,Ceph可以分两次向client进行确认。当各个OSD都将数据写入内存缓冲区后,就先向client发送一次确认,此时client即可以向下执行。待各个OSD都将数据写入磁盘后,会向client发送一个最终确认信号,此时client可以根据需要删除本地数据。

分析上述流程可以看出,在正常情况下,client可以独立完成OSD寻址操作,而不必依赖于其他系统模块。因此,大量的client可以同时和大量的OSD进行并行操作。同时,如果一个file被切分成多个object,这多个object也可被并行发送至多个OSD。

从OSD的角度来看,由于同一个OSD在不同的PG中的角色不同,因此,其工作压力也可以被尽可能均匀地分担,从而避免单个OSD变成性能瓶颈。

如果需要读取数据,client只需完成同样的寻址过程,并直接和Primary OSD联系。目前的Ceph设计中,被读取的数据仅由Primary OSD提供。但目前也有分散读取压力以提高性能的讨论。

集群维护

由若干个monitor共同负责整个Ceph集群中所有OSD状态的发现与记录,并且共同形成cluster map的master版本,然后扩散至全体OSD以及client。OSD使用cluster map进行数据的维护,而client使用cluster map进行数据的寻址。

在集群中,各个monitor的功能总体上是一样的,其相互间的关系可以被简单理解为主从备份关系。因此,在下面的讨论中不对各个monitor加以区分。

略显出乎意料的是,monitor并不主动轮询各个OSD的当前状态。正相反,OSD需要向monitor上报状态信息。常见的上报有两种情况:一是新的OSD被加入集群,二是某个OSD发现自身或者其他OSD发生异常。在收到这些上报信息后,monitor将更新cluster map信息并加以扩散。其细节将在下文中加以介绍。

Cluster map的实际内容包括:

(1) Epoch,即版本号。Cluster map的epoch是一个单调递增序列。Epoch越大,则cluster map版本越新。因此,持有不同版本cluster map的OSD或client可以简单地通过比较epoch决定应该遵从谁手中的版本。而monitor手中必定有epoch最大、版本最新的cluster map。当任意两方在通信时发现彼此epoch值不同时,将默认先将cluster map同步至高版本一方的状态,再进行后续操作。

(2)各个OSD的网络地址。

(3)各个OSD的状态。OSD状态的描述分为两个维度:up或者down(表明OSD是否正常工作),in或者out(表明OSD是否在至少一个PG中)。因此,对于任意一个OSD,共有四种可能的状态:

—— Up且in:说明该OSD正常运行,且已经承载至少一个PG的数据。这是一个OSD的标准工作状态;

—— Up且out:说明该OSD正常运行,但并未承载任何PG,其中也没有数据。一个新的OSD刚刚被加入Ceph集群后,便会处于这一状态。而一个出现故障的OSD被修复后,重新加入Ceph集群时,也是处于这一状态;

—— Down且in:说明该OSD发生异常,但仍然承载着至少一个PG,其中仍然存储着数据。这种状态下的OSD刚刚被发现存在异常,可能仍能恢复正常,也可能会彻底无法工作;

—— Down且out:说明该OSD已经彻底发生故障,且已经不再承载任何PG。

(4)CRUSH算法配置参数。表明了Ceph集群的物理层级关系(cluster hierarchy),位置映射规则(placement rules)。

根据cluster map的定义可以看出,其版本变化通常只会由(3)和(4)两项信息的变化触发。而这两者相比,(3)发生变化的概率更高一些。这可以通过下面对OSD工作状态变化过程的介绍加以反映。

一个新的OSD上线后,首先根据配置信息与monitor通信。Monitor将其加入cluster map,并设置为up且out状态,再将最新版本的cluster map发给这个新OSD。收到monitor发来的cluster map之后,这个新OSD计算出自己所承载的PG(为简化讨论,此处我们假定这个新的OSD开始只承载一个PG),以及和自己承载同一个PG的其他OSD。然后,新OSD将与这些OSD取得联系。如果这个PG目前处于降级状态(即承载该PG的OSD个数少于正常值,如正常应该是3个,此时只有2个或1个。这种情况通常是OSD故障所致),则其他OSD将把这个PG内的所有对象和元数据复制给新OSD。数据复制完成后,新OSD被置为up且in状态。而cluster map内容也将据此更新。这事实上是一个自动化的failure recovery过程。当然,即便没有新的OSD加入,降级的PG也将计算出其他OSD实现failure recovery。

如果该PG目前一切正常,则这个新OSD将替换掉现有OSD中的一个(PG内将重新选出Primary OSD),并承担其数据。在数据复制完成后,新OSD被置为up且in状态,而被替换的OSD将退出该PG(但状态通常仍然为up且in,因为还要承载其他PG)。而cluster map内容也将据此更新。这事实上是一个自动化的数据re-balancing过程。

如果一个OSD发现和自己共同承载一个PG的另一个OSD无法联通,则会将这一情况上报monitor。此外,如果一个OSD deamon发现自身工作状态异常,也将把异常情况主动上报给monitor。在上述情况下,monitor将把出现问题的OSD的状态设为down且in。如果超过某一预订时间期限,该OSD仍然无法恢复正常,则其状态将被设置为down且out。反之,如果该OSD能够恢复正常,则其状态会恢复为up且in。在上述这些状态变化发生之后,monitor都将更新cluster map并进行扩散。这事实上是自动化的failure detection过程。

由之前介绍可以看出,对于一个Ceph集群而言,即便由数千个甚至更多OSD组成,cluster map的数据结构大小也并不惊人。同时,cluster map的状态更新并不会频繁发生。即便如此,Ceph依然对cluster map信息的扩散机制进行了优化,以便减轻相关计算和通信压力。

首先,cluster map信息是以增量形式扩散的。如果任意一次通信的双方发现其epoch不一致,则版本更新的一方将把二者所拥有的cluster map的差异发送给另外一方。

其次,cluster map信息是以异步且lazy的形式扩散的。也即,monitor并不会在每一次cluster map版本更新后都将新版本广播至全体OSD,而是在有OSD向自己上报信息时,将更新回复给对方。类似的,各个OSD也是在和其他OSD通信时,将更新发送给版本低于自己的对方。

基于上述机制,Ceph避免了由于cluster map版本更新而引起的广播风暴。这虽然是一种异步且lazy的机制,但根据Sage论文中的结论,对于一个由n个OSD组成的Ceph集群,任何一次版本更新能够在O(log(n))时间复杂度内扩散到集群中的任何一个OSD上。

一个可能被问到的问题是:既然这是一种异步和lazy的扩散机制,则在版本扩散过程中,系统必定出现各个OSD看到的cluster map不一致的情况,这是否会导致问题?答案是:不会。事实上,如果一个client和它要访问的PG内部的各个OSD看到的cluster map状态一致,则访问操作就可以正确进行。而如果这个client或者PG中的某个OSD和其他几方的cluster map不一致,则根据Ceph的机制设计,这几方将首先同步cluster map至最新状态,并进行必要的数据re-balancing操作,然后即可继续正常访问。

参考:

https://www.cnblogs.com/gzxbkk/p/7723999.html

标签:Ceph,map,一之,object,基础知识,ceph,cluster,PG,OSD
来源: https://www.cnblogs.com/liuxingxing/p/13551406.html