标签:Convolutional Segmentation nn Fully self feature score feat3 FCN
FCN论文地址:https://arxiv.org/abs/1411.4038 FCN源代码地址:https://github.com/shelhamer/fcn.berkeleyvision.org 图像语义分割(Semantic Segmentation)是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景、人或车等),从而进行区域划分。目前,语义分割已经被广泛应用于自动驾驶、无人机落点判定等场景中。
本文提出全卷积网络(Fully Convolutional Networks, FCN)用于图像语义分割。FCN主要思想是将一般的分类网络(如VGG,ResNet等)最后几层的全连接层替换成卷积层。FCN的好处是可以接受任意尺寸的输入图像。
下面主要介绍一下FCN在语义分割上具体做法。 整个FCN网络基本原理如图5(只是原理示意图):
- image经过多个conv和+一个max pooling变为pool1 feature,宽高变为1/2
- pool1 feature再经过多个conv+一个max pooling变为pool2 feature,宽高变为1/4
- pool2 feature再经过多个conv+一个max pooling变为pool3 feature,宽高变为1/8
- ......
- 直到pool5 feature,宽高变为1/32。
那么:
- 对于FCN-32s,直接对pool5 feature进行32倍上采样获得32x upsampled feature,再对32x upsampled feature每个点做softmax prediction获得32x upsampled feature prediction(即分割图)。
- 对于FCN-16s,首先对pool5 feature进行2倍上采样获得2x upsampled feature,再把pool4 feature和2x upsampled feature逐点相加(element-wise add),然后对相加的feature进行16倍上采样,并softmax prediction,获得16x upsampled feature prediction。
- 对于FCN-8s,首先进行pool4+2x upsampled feature逐点相加,然后又进行pool3+2x upsampled逐点相加,即进行更多次特征融合。具体过程与16s类似,不再赘述。
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.utils import model_zoo from torchvision import models class FCN8(nn.Module): def __init__(self, num_classes): super().__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:9]) self.feat3 = nn.Sequential(*feats[10:16]) self.feat4 = nn.Sequential(*feats[17:23]) self.feat5 = nn.Sequential(*feats[24:30]) for m in self.modules(): if isinstance(m, nn.Conv2d): m.requires_grad = False self.fconn = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), ) self.score_feat3 = nn.Conv2d(256, num_classes, 1) self.score_feat4 = nn.Conv2d(512, num_classes, 1) self.score_fconn = nn.Conv2d(4096, num_classes, 1) def forward(self, x): feats = self.feats(x) feat3 = self.feat3(feats) feat4 = self.feat4(feat3) feat5 = self.feat5(feat4) fconn = self.fconn(feat5) score_feat3 = self.score_feat3(feat3) score_feat4 = self.score_feat4(feat4) score_fconn = self.score_fconn(fconn) score = F.upsample_bilinear(score_fconn, score_feat4.size()[2:]) score += score_feat4 score = F.upsample_bilinear(score, score_feat3.size()[2:]) score += score_feat3 return F.upsample_bilinear(score, x.size()[2:])上述3种网络的效果如下, 明显可以看出效果:FCN-32s < FCN-16s < FCN-8s,即使用多层feature融合有利于提高分割准确性。
另外几点说明:
- 最终的输出通道数为21,为PASCAL数据集20类+1类背景。
- 网络最终的输出大小为 输入图像width * 输入图像height * 21,损失函数是对每一个像素点求softmax loss,然后求和。
- 上采样使用反卷积(deconvolution)的方式,使用双线性插值初始化。
- 原网络中会设置第一层卷积层的pad=100,后面在特征融合时引入了crop层。
其中, nij表示将本属于第i类的像素预测为属于第j类的像素数量;ncl表示像素的类别总数;ti表示属于第i类的像素总数,
参考: 图像语义分割入门+FCN/U-Net网络解析 https://zhuanlan.zhihu.com/p/31428783
标签:Convolutional,Segmentation,nn,Fully,self,feature,score,feat3,FCN
来源: https://www.cnblogs.com/hejunlin1992/p/13474940.html
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。