CVPR2020|图像重建(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】
作者:互联网
目录
- 1.超分辨率
- 图像超分辨率
- PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
- Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution
- EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning
- Unpaired Image Super-Resolution Using Pseudo-Supervision
- Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers
- Residual Feature Aggregation Network for Image Super-Resolution
- Deep Unfolding Network for Image Super-Resolution
- Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
- Learning Texture Transformer Network for Image Super-Resolution
- Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution
- Structure-Preserving Super Resolution with Gradient Guidance
- Unified Dynamic Convolutional Network for Super-Resolution With Variational Degradations
- Perceptual Extreme Super Resolution Network with Receptive Field Block
- Real-World Super-Resolution via Kernel Estimation and Noise Injection
- Investigating Loss Functions for Extreme Super-Resolution
- Nested Scale-Editing for Conditional Image Synthesis
- MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
- Guided Frequency Separation Network for Real-World Super-Resolution
- 视频超分辨率
- 人脸超分辨率
- 深度图超分辨率
- 光场图像超分辨率
- 高光谱图像超分辨率
- 零样本超分辨率
- 用于超分辨率的数据增广
- 超分辨率用于语义分割
- 图像超分辨率
- 2.图像恢复
- 3.去雨
- 4.去雾
- 5.去模糊
- 6.去噪
- 参考
CVPR2020的所有论文:http://openaccess.thecvf.com/CVPR2020.py
CVPR2020Workshops:http://openaccess.thecvf.com/CVPR2020_workshops/menu.py
1.超分辨率
图像超分辨率
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
论文:https://arxiv.org/abs/2003.03808
代码:https://github.com/adamian98/pulse
解析:杜克大学提出 AI 算法,拯救渣画质马赛克秒变高清
备注:自监督;GAN;放大像素64倍(暂时是最高倍数);将生成HR图像对应的LR图像与原图(LR)对比,找到最接近的那张,并反推找到对应的HR图像
Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution
论文:https://arxiv.org/abs/2003.07018
代码:https://github.com/guoyongcs/DRN
解析:
备注:DRN
EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning
作者: Lin Wang, Tae-Kyun Kim, Kuk-Jin Yoon
单位:韩国科学技术院;伦敦帝国学院
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_EventSR_From_Asynchronous_Events_to_Image_Reconstruction_Restoration_and_Super-Resolution_CVPR_2020_paper.pdf
视频 :https://www.youtube.com/watch?v=OShS_MwHecs
数据集: https://github.com/wl082013/ESIM_dataset
备注:图像重建、恢复、超分
Unpaired Image Super-Resolution Using Pseudo-Supervision
论文:https://arxiv.org/abs/2002.11397?context=eess
代码:
解析:#每日五分钟一读#Image Super-Resolution
备注:
Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers
作者: Shady Abu Hussein, Tom Tirer, Raja Giryes
论文:https://arxiv.org/abs/1912.00157
Residual Feature Aggregation Network for Image Super-Resolution
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_Residual_Feature_Aggregation_Network_for_Image_Super-Resolution_CVPR_2020_paper.pdf
代码:
解析:超越RCAN,图像超分又一峰:RFANet
备注:超越RCAN,图像超分又一峰:RFANet
Deep Unfolding Network for Image Super-Resolution
论文:https://arxiv.org/abs/2003.10428
代码:https://github.com/cszn/USRNet
解析:CVPR2020:USRNet
备注:USRNet
Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
论文:https://arxiv.org/abs/2006.01424
代码:https://github.com/SHI-Labs/Cross-Scale-Non-Local-Attention
Learning Texture Transformer Network for Image Super-Resolution
论文:https://arxiv.org/abs/2006.04139
代码:https://github.com/FuzhiYang/TTSR
备注:注意力机制
Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution
Structure-Preserving Super Resolution with Gradient Guidance
论文:https://arxiv.org/abs/2003.13063
代码:https://github.com/Maclory/Deep-Iterative-Collaboration
解析:CVPR2020丨SPSR:基于梯度指导的结构保留超分辨率方法
备注:SPSR
Unified Dynamic Convolutional Network for Super-Resolution With Variational Degradations
论文:https://arxiv.org/abs/2004.06965
代码:
解析:UDVD:适用于可变降质类型的通用图像超分,附参考代码
备注:UDVD
Perceptual Extreme Super Resolution Network with Receptive Field Block
论文:https://arxiv.org/abs/2005.12597
代码:
解析:NTIRE2020冠军方案RFB-ESRGAN:带感受野模块的超分网络
备注:NTIRE2020极限超分冠军方案RFB-ESRGAN;Workshops
Real-World Super-Resolution via Kernel Estimation and Noise Injection
论文:http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.html
代码:https://github.com/jixiaozhong/RealSR
解析:
备注:NTIRE2020-RWSR超分双赛道冠军方案;Workshops
Investigating Loss Functions for Extreme Super-Resolution
论文:http://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Jo_Investigating_Loss_Functions_for_Extreme_Super-Resolution_CVPRW_2020_paper.pdf
代码:https://github.com/kingsj0405/ciplab-NTIRE-2020
解析:
备注:NTIRE2020极限超分亚军方案CIPLab;Workshops
Nested Scale-Editing for Conditional Image Synthesis
论文:http://arxiv.org/abs/2006.02038
备注:解耦表征、多模图像转换、超分、修复
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
论文:https://arxiv.org/abs/1903.06048v3
代码:https://github.com/akanimax/msg-stylegan-tf
解析:CVPR2020之MSG-GAN:简单有效的SOTA
备注:NTIRE2020极限超分亚军方案CIPLab;Workshops
Guided Frequency Separation Network for Real-World Super-Resolution
论文:http://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Zhou_Guided_Frequency_Separation_Network_for_Real-World_Super-Resolution_CVPRW_2020_paper.pdf
代码:
解析:CVPR2020 | 高低频分离超分方案
备注:NTIRE2020极限超分前五方案;Workshops
视频超分辨率
TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution
论文:https://arxiv.org/abs/1812.02898
代码:https://github.com/YapengTian/TDAN-VSR-CVPR-2020
Demo Video:https://www.youtube.com/watch?v=eZExENE50I0
备注:首次将形变卷积用到视频超分领域;TDAN
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
论文:https://arxiv.org/abs/2002.11616
代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020
解析:慢镜头变焦:视频超分辨率:CVPR2020论文解析
Video Super-Resolution With Temporal Group Attention
Space-Time-Aware Multi-Resolution Video Enhancement
主页:https://alterzero.github.io/projects/STAR.html
论文:http://arxiv.org/abs/2003.13170
代码:https://github.com/alterzero/STARnet
人脸超分辨率
Learning to Have an Ear for Face Super-Resolution
论文:https://arxiv.org/abs/1909.12780
Deep Face Super-Resolution With Iterative Collaboration Between Attentive Recovery and Landmark Estimation
论文:https://arxiv.org/abs/1812.02898
代码:https://github.com/YapengTian/TDAN-VSR-CVPR-2020
深度图超分辨率
Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution
论文:https://arxiv.org/abs/2006.01469
光场图像超分辨率
Light Field Spatial Super-Resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization
论文:https://arxiv.org/abs/2004.02215
代码:https://github.com/jingjin25/LFSSR-ATO
高光谱图像超分辨率
Unsupervised Adaptation Learning for Hyperspectral Imagery Super-Resolution
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Unsupervised_Adaptation_Learning_for_Hyperspectral_Imagery_Super-Resolution_CVPR_2020_paper.pdf
代码:https://github.com/JiangtaoNie/UAL
零样本超分辨率
Meta-Transfer Learning for Zero-Shot Super-Resolution
论文:https://arxiv.org/abs/2002.12213
代码:https://github.com/JWSoh/MZSR
用于超分辨率的数据增广
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Yoo_Rethinking_Data_Augmentation_for_Image_Super-resolution_A_Comprehensive_Analysis_and_CVPR_2020_paper.html
代码:https://github.com/clovaai/cutblur
超分辨率用于语义分割
Dual Super-Resolution Learning for Semantic Segmentation
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Dual_Super-Resolution_Learning_for_Semantic_Segmentation_CVPR_2020_paper.html
代码:https://github.com/wanglixilinx/DSRL
2.图像恢复
Learning Invariant Representation for Unsupervised Image Restoration
论文:https://arxiv.org/pdf/2003.12769.pdf
代码:https://github.com/Wenchao-Du/LIR-for-Unsupervised-IR
Contextual Residual Aggregation for Ultra High-Resolution Image Inpainting
论文:https://arxiv.org/abs/2005.09704
备注:超高分辨率图像修复、注意力机制
UCTGAN: Diverse Image Inpainting based on Unsupervised Cross-Space
Attentive Normalization for Conditional Image Generation
论文:https://arxiv.org/abs/2004.03828
备注:注意力机制、类条件图像生成、图像修复
3.去雨
Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images
Multi-Scale Progressive Fusion Network for Single Image Deraining
论文:https://arxiv.org/abs/2003.10985
代码:https://github.com/kuihua/MSPFN
4.去雾
Domain Adaptation for Image Dehazing
论文:https://arxiv.org/abs/2005.04668
Multi-Scale Boosted Dehazing Network with Dense Feature Fusion
论文:https://arxiv.org/abs/2004.13388
代码:https://github.com/BookerDeWitt/MSBDN-DFF
5.去模糊
视频去模糊
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior
主页:https://csbhr.github.io/projects/cdvd-tsp/index.html
论文:https://arxiv.org/abs/2004.02501
代码:https://github.com/csbhr/CDVD-TSP
6.去噪
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising
论文:https://arxiv.org/abs/2003.12751
代码:https://github.com/Vandermode/NoiseModel
CycleISP: Real Image Restoration via Improved Data Synthesis
论文:https://arxiv.org/abs/2003.07761
代码:https://github.com/swz30/CycleISP
未完待续~
参考
[1] 杜克大学提出 AI 算法,拯救渣画质马赛克秒变高清
[2] CVPR 2020 论文大盘点-超分辨率篇
[3] CVPR2020丨SPSR:基于梯度指导的结构保留超分辨率方法
[4] CVPR2020:USRNet
[5] UDVD:适用于可变降质类型的通用图像超分,附参考代码
[6] NTIRE2020冠军方案RFB-ESRGAN:带感受野模块的超分网络
[7] 超越RCAN,图像超分又一峰:RFANet
[8] #每日五分钟一读#Image Super-Resolution
[9] CVPR 2020 | 几篇GAN在low-level vision中的应用论文
[10] 超100篇!CVPR 2020最全GAN论文梳理汇总!
[11] CVPR2020之MSG-GAN:简单有效的SOTA
[12] CVPR2020-Code
[13] 慢镜头变焦:视频超分辨率:CVPR2020论文解析
[14] CVPR2020 | 高低频分离超分方案
码字不易,如果您觉得有帮助,麻烦帮我点个赞~~
标签:Super,Image,论文,2020,com,https,图像,去模糊,Resolution 来源: https://www.cnblogs.com/Kobaayyy/p/13163056.html