机器学习 决策树篇——解决离散变量的分类问题
作者:互联网
机器学习 决策树篇——解决离散变量的分类问题
摘要
本文通过python实现了熵增益和熵增益率的计算、实现了离散变量的决策树模型,并将代码进行了封装,方便读者调用。
熵增益和熵增益率计算
此对象用于计算离散变量的熵、条件熵、熵增益(互信息)和熵增益率
.cal_entropy():计算熵的函数
.cal_conditional_entropy():计算条件熵的函数
.cal_entropy_gain():计算熵增益(互信息)的函数
.cal_entropy_gain_ratio():计算熵增益率的函数
用法:先传入特征和标注创建对象,再调用相关函数计算就行
特征和标注的类型最好转入DataFrame、Series或者list格式
若想计算单个变量的熵,则特征和标注传同一个值就行
import numpy as np
import pandas as pd
import copy
from sklearn.preprocessing import LabelEncoder
from sklearn.datasets import load_wine,load_breast_cancer
class CyrusEntropy(object):
"""
此对象用于计算离散变量的熵、条件熵、熵增益(互信息)和熵增益率
.cal_entropy():计算熵的函数
.cal_conditional_entropy():计算条件熵的函数
.cal_entropy_gain:计算熵增益(互信息)的函数
.cal_entropy_gain_ratio():计算熵增益率的函数
用法:先传入特征和标注创建对象,再调用相关函数计算就行
特征和标注的类型最好转入DataFrame、Series或者list格式
若想计算单个变量的熵,则特征和标注传同一个值就行
"""
def __init__(self,x,y):
# 特征进行标签编码
x = pd.DataFrame(x)
y = pd.Series(y)
x0 = copy.copy(x)
y = copy.copy(y)
for i in range(x.shape[1]):
x0.iloc[:,i] = LabelEncoder().fit_transform(x.iloc[:,i])
self.X = x0
self.Y = pd.Series(LabelEncoder().fit_transform(y))
def cal_entropy(self):
x_entropy = []
for i in range(self.X.shape[1]):
number = np.array(self.X.iloc[:,i].value_counts())
p = number/number.sum()
x_entropy.append(np.sum(-p*np.log2(p)))
number = np.array(self.Y.value_counts())
p = number/number.sum()
y_entropy = np.sum(-p*np.log2(p))
return x_entropy,y_entropy
def cal_conditional_entropy(self):
y_x_conditional_entropy = []
for i in range(self.X.shape[1]):
dict_flag = {}
list_flag = []
for j in range(self.X.shape[0]):
dict_flag[self.X.iloc[j,i]] = dict_flag.get(self.X.iloc[j,i],list_flag) + [self.Y.iloc[j]]
condition_value = 0
for y_value in dict_flag.values():
number = np.array(pd.Series(y_value).value_counts())
p = number/number.sum()
condition_value += np.sum(-p*np.log2(p))*len(y_value)/(self.Y.shape[0])
y_x_conditional_entropy.append(condition_value)
return y_x_conditional_entropy
def cal_entropy_gain(self):
return list(np.array(self.cal_entropy()[1])-np.array(self.cal_conditional_entropy()))
def cal_entropy_gain_ratio(self):
return list(np.array(self.cal_entropy_gain())/np.array(self.cal_entropy()[0]))
熵增益和熵增益率运行结果
使用kaggle上的一份离散变量数据进行模型验证,以下是kaggle上的数据描述:
The Lifetime reality television show and social experiment, Married at First Sight, features men and women who sign up to marry a complete stranger they’ve never met before. Experts pair couples based on tests and interviews. After marriage, couples have only a few short weeks together to decide if they want to stay married or get a divorce. There have been 10 full seasons so far which provides interesting data to look at what factors may or may not play a role in their decisions at the end of eight weeks as well as longer-term outcomes since the show aired.
if __name__ == "__main__":
data = pd.read_csv("./mafs.csv",header=0)
Y = data.Status
X = data.drop(labels="Couple",axis=1)
X = X.drop(labels="Status",axis=1)
print(X.head(2))
建立求取信息熵对象
求取各特征和标注的信息熵
# 建立求取信息熵对象
entropy_model = CyrusEntropy(X,Y)
# 求取各特征和标注的信息熵
entropy = entropy_model.cal_entropy()
([3.29646716508619, 3.1199965768508955, 6.087462841250342, 3.520444587294042, 1.0, 6.087462841250342, 0.8739810481273578, 0.0, 0.833764907210665, 0.833764907210665, 0.833764907210665, 0.833764907210665, 0.6722948170756379, 0.8739810481273578, 0.833764907210665], 0.833764907210665)
求取标注相对各特征的条件熵
# 求取标注相对各特征的条件熵
conditon_entropy = entropy_model.cal_conditional_entropy()
print(conditon_entropy)
[0.6655644259732555, 0.699248162082863, 0.0, 0.7352336969711815, 0.833764907210665, 0.0, 0.67371811971174, 0.833764907210665, 0.7982018075321516, 0.7982018075321516, 0.7982018075321516, 0.7982018075321516, 0.8255150132281116, 0.8067159627055736, 0.8276667497383372]
求取标注相对于各特征的信息增益(互信息)
# 求取标注相对于各特征的信息增益(互信息)
entropy_gain = entropy_model.cal_entropy_gain()
print(entropy_gain)
[0.1682004812374095, 0.13451674512780198, 0.833764907210665, 0.09853121023948352, 0.0, 0.833764907210665, 0.16004678749892498, 0.0, 0.035563099678513344, 0.035563099678513344, 0.035563099678513344, 0.035563099678513344, 0.00824989398255338, 0.027048944505091432, 0.006098157472327781]
求取标注相对于各特征的信息增益率
# 求取标注相对于各特征的信息增益率
entropy_gain_rate = entropy_model.cal_entropy_gain_ratio()
print(entropy_gain_rate)
[0.05102446735064376, 0.04311438869063559, 0.1369642704939145, 0.02798828608042902, 0.0, 0.1369642704939145, 0.183123865033287, nan, 0.04265362978335057, 0.04265362978335057, 0.04265362978335057, 0.04265362978335057, 0.012271244360381867, 0.03094912019322165, 0.007314001128602282]
离散变量的决策树模型
此对象为针对离散变量的分类问题建立决策树模型适用的。
.fit():拟合及训练模型的函数
.predict():模型预测函数
.tree_net:决策树网络
用法:先调用类创建实例对象,再调用fit函数训练模型,
再调用predict函数进行预测,且可通过tree_net属性查看决策树网络。
特征和标注的类型最好转入DataFrame、Series或者list格式
class CyrusDecisionTreeDiscrete(object):
"""
此对象为针对离散变量的分类问题建立决策树模型适用的。
.fit():拟合及训练模型的函数
.predict():模型预测函数
.tree_net:决策树网络
用法:先调用类创建实例对象,再调用fit函数训练模型,
再调用predict函数进行预测,且可通过tree_net属性查看决策树网络。
特征和标注的类型最好转入DataFrame、Series或者list格式
"""
X = None
Y = None
def __init__(self,algorithm = "ID3"):
self.method = algorithm
self.tree_net = {}
def tree(self,x,y,dict_):
entropy_model = CyrusEntropy(x,y)
index = np.argmax(entropy_model.cal_entropy_gain())
dict_[index] = {}
dict_x_flag = {}
dict_y_flag = {}
for i in range(x.shape[0]):
dict_x_flag[x.iloc[i,index]] = dict_x_flag.get(x.iloc[i,index],[]) + [list(x.iloc[i,:])]
dict_y_flag[x.iloc[i,index]] = dict_y_flag.get(x.iloc[i,index],[]) + [(y.iloc[i])]
key_list = []
for key,value in dict_x_flag.items():
if pd.Series(dict_y_flag[key]).value_counts().shape[0] == 1:
dict_[index][key] = dict_y_flag[key][0]
else:
key_list.append(key)
dict_[index][key] = {}
code = ""
if len(key_list) != 0:
for key in key_list:
code += "self.tree(pd.DataFrame(dict_x_flag['{}']),pd.Series(dict_y_flag['{}']),dict_[{}]['{}']),".format(key,key,index,key)
code = code[:-1]
return eval(code)
def fit(self,x,y):
self.X = pd.DataFrame(x)
self.Y = pd.Series(y)
self.tree(self.X,self.Y,self.tree_net)
def cal_label(self,x,dict_):
index = list(dict_.keys())[0]
if str(type(dict_[index][x[index]])) != "<class 'dict'>":
return dict_[index][x[index]]
else:
return self.cal_label(x,dict_[index][x[index]])
def predict(self,x):
x = pd.DataFrame(x)
y = []
for i in range(x.shape[0]):
se = pd.Series(x.iloc[i,:])
y.append(self.cal_label(se,self.tree_net))
return y
决策树模型运行结果
建立决策树模型
训练并拟合模型
模型预测
# 建立决策树模型
tree_model = CyrusDecisionTreeDiscrete()
# 训练并拟合模型
tree_model.fit(X,Y)
# 模型预测
y_pre = tree_model.predict(X)
print(y_pre)
['Married', 'Married', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Married', 'Married', 'Married', 'Married', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Married', 'Married', 'Divorced', 'Divorced', 'Married', 'Married', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Married', 'Married', 'Divorced', 'Divorced', 'Married', 'Married', 'Married', 'Married', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Married', 'Married', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced', 'Divorced']
准确率检测
# 准确率检测
result = [1 if y_pre[i] == Y[i] else 0 for i in range(len(y_pre))]
print("准确率为:",np.array(result).sum()/len(result))
准确率为: 1.0
by CyrusMay 2020 05 20
时间如果可以倒流
我想我还是
会卯起来蹉跎
反正就这样吧
我知道我
努力过
——————五月天(一颗苹果)——————
标签:变量,Divorced,self,Married,离散,entropy,cal,dict,决策树 来源: https://blog.csdn.net/Cyrus_May/article/details/106225293