其他分享
首页 > 其他分享> > 基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

作者:互联网

  1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译
  2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码
  3. 简要分析操作系统内核核心功能及运行工作机制

 

 一、实验环境配置-mykernel 2.0

(1)本机环境:VMware® Workstation 15 Pro + Ubuntu18.04.2 LTS

(2)下载mykernel文件:

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch  ##这句不行

发现连接不能用,于是:

git clone https://github.com/mengning/mykernel   ##clone整个文件

(3)安装axel: 

sudo apt install axel

(4)通过axel下载对应的kernel压缩文件:

axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz

下载连续失败:

于是手动从网站下载Linux内核文件:

 

(5)解压缩下载好的kernel文件:

xz -d linux-5.4.34.tar.xz

 

 然后打包:

tar -xvf linux-5.4.34.tar

 

(6)利用mykernel,修补kernel文件

cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch

 

 

(7)安装必须的库:

sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev

(8)生成内核编译:

make defconfig

  

(9)编译内核kernel:

make -j$(nproc) # 编译的时间不算太长,只用了8min

 

(10)安装qemu:

sudo apt install qemu

 现在就完成了实验环境的配置啦!

 

二、实验过程

(1)查看当前的kernel运行状态

qemu-system-x86_64 -kernel arch/x86/boot/bzImage

从qemu窗口中可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序可以执行:

 

(2)查看mykernel关键代码

进入mykernel目录:

上图可以看到qemu窗口输出的内容的代码 mymain.c 和 myinterrupt.c

cat mymain.c

cat myinterrupt.c

从中可知:刚刚的QEMU窗口中的结果正是这两个文件中的程序执行结果。

 

 

(3)基于mykernel 2.0编写一个操作系统内核并进行分析

 

1.对mypcb.h文件注释分析:

 

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
// 存储当前进程中正在执行线程的ip和sp
struct Thread {
    unsigned long        ip; 
    unsigned long        sp;
};

// PCB 模拟进程控制块
typedef struct PCB{
    int pid;  // 进程号
    volatile long state;    /* -1 unrunnable阻塞态, 0 runnable可运行态, >0 stopped暂停态 */
    unsigned long stack[KERNEL_STACK_SIZE]; // 进程使用的堆栈
    /* CPU-specific state of this task */
    struct Thread thread;  // 当前正在执行的线程信息
    unsigned long    task_entry;  // 存储进程入口函数地址(本实验中为my_process函数)
    struct PCB *next; // 指向下一个PCB
}tPCB;

void my_schedule(void); // 函数的声明 my_schedule,它的实现在my_interrupt.c中,
//在mymain.c中的各个进程函数会根据一个全局变量的状态来决定是否调用它,从而实现主动调度。

 

2.修改mymain.c中的my_start_kernel函数,并在其中实现了my_process函数,作为进程的代码模拟一个个进程,时间片轮转调度:

 

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"             /* push rbp */
        "pushq %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to rip */
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
} 

int i = 0;

void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

 

void __init my_start_kernel(void)函数是mykernel内核代码的入口,负责初始化内核的各个组成部分。

在Linux内核源代码中,实际的内核⼊⼝是init/main.c中的start_kernel(void)函数。

my_process函数的while循环可见,不断检测全局变量my_need_sched的值,当my_need_sched的值从0变成1的时候,就需要发生进程调度,全局变量my_need_sched重新置为0,执行my_schedule()函数进行进程切换。

 

 

3.修改myinterrupt.c

 

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;      
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
    }  
    return;    
}

重新编译:

make clean
make allnoconfig          
make

然后运行QEMU:

qemu -kernel arch/x86/boot/bzImage

看到运行结果出现了变化:

 

标签:kernel,task,process,pid,内核,mykernel,2.0,my
来源: https://www.cnblogs.com/qyf2199/p/12807451.html