其他分享
首页 > 其他分享> > 基于mykernel 2.0编写一个操作系统内核

基于mykernel 2.0编写一个操作系统内核

作者:互联网

1 配置实验环境

(1)本机实验环境:

 

 

 (2)Set up mykernel 2.0 in Ubuntu 18.04

 运行命令:

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch

 

 

出现拒绝连接的情况,需要修改hosts配置文件

执行命令:

sudo vi etc/hosts

但是群里有现成的文件,嫌麻烦直接拷贝。

然后执行命令:

sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz

使用多线程下载内核文件。

解压:

xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar

解压成功后

 

 

 继续执行:

cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc) # 编译的时间比较久哦

编译完成后出现如下界面:

 

 

 继续:

sudo apt install qemu
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

使用qemu启动内核

 

 

 

从qemu窗口中您可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行

2 编写内核

 (1)首先在mykernel目录下增加一个mypcb.h头文件,用来定义进程控制块,也就是进程结构体的定义。主要有进程号、进程状态、分配存储区、保存进程的现场、进程入口等。

  

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);

  (2)对mymain,c进行修改,创建进程,0号进程是手工创建的,启动0号进程需要一些汇编代码。再在mymain.c中添加my_process函数,用来作为进程的代码模拟一个进程,这里采用进程运行完一个时间片主动让出CPU的方式。

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"             /* push rbp */
        "pushq %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to rip */
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
} 

int i = 0;

void my_process(void)
{    
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

  (3)在时钟中断处理过程中记录时间片,修改myinterrupt.c的my_timer_handler来记录时间片。在myinterrupt.c中添加进程切换的代码my_schedule(void),调度策略就是简单的排队等待调度,next = my_current_task->next就是进程调度,调度下一个进程。进程切换是那一段汇编代码。

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0; /*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    }
    time_count ++ ; 
    return;     
} void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;     if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {       
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); 
        /* switch to next process */
        asm volatile(   
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev */   
            "pushq %3\n\t"
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );
    } 
    return;   
}

  (4)重新编译内核,运行结果如下

 

 

标签:task,void,pid,next,include,内核,mykernel,2.0,my
来源: https://www.cnblogs.com/sovegetabable/p/12876160.html