【项目】数仓项目(七)
作者:互联网
(图片来源于网络,侵删)
一、数仓搭建 - DWD 层
- 1)对用户行为数据解析
- 2)对核心数据进行判空过滤
- 3)对业务数据采用维度模型重新建模,即维度退化
1.1 DWD 层(用户行为启动表数据解析)
1.1.1 创建启动表
1)建表语句
drop table if exists dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`open_ad_type` string,
`action` string,
`loading_time` string,
`detail` string,
`extend1` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_start_log/'
TBLPROPERTIES('parquet.compression'='lzo');
说明:数据采用 parquet 存储方式,是可以支持切片的,不需要再对数据创建索引
1.1.2 get_json_object 函数使用
1)输入数据 xjson
Xjson=[{"name":" 大 郎 ","sex":" 男 ","age":"25"},{"name":" 西 门 庆 ","sex":" 男","age":"47"}]
2)取出第一个 json 对象
SELECT get_json_object(xjson,"$.[0]") FROM person;
结果是:{“name”:“大郎”,“sex”:“男”,“age”:“25”}
3)取出第一个 json 的 age 字段的值
SELECT get_json_object(xjson,"$.[0].age") FROM person;
结果是:25
1.1.3 向启动表导入数据
insert overwrite table dwd_start_log
PARTITION (dt='2020-03-10')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from ods_start_log
where dt='2020-03-10';
3)测试
select * from dwd_start_log where dt='2020-03-10' limit 2;
1.1.4 DWD 层启动表加载数据脚本
1)vim ods_to_dwd_log.sh
在脚本中编写如下内容
#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table "$APP".dwd_start_log
PARTITION (dt='$do_date')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from "$APP".ods_start_log
where dt='$do_date';
"
$hive -e "$sql"
2)增加脚本执行权限
chmod 770 ods_to_dwd_log.sh
3)脚本使用
ods_to_dwd_log.sh 2020-03-11
4)查询导入结果
select * from dwd_start_log where dt='2020-03-11' limit 2;
1.2 DWD 层(用户行为事件表数据解析)
1.2.1 创建基础明细表
明细表用于存储 ODS 层原始表转换过来的明细数据
1)创建事件日志基础明细表
drop table if exists dwd_base_event_log;
CREATE EXTERNAL TABLE dwd_base_event_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`event_name` string,
`event_json` string,
`server_time` string)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_base_event_log/'
TBLPROPERTIES('parquet.compression'='lzo');
2)说明:其中 event_name 和 event_json 用来对应事件名和整个事件。这个地方将原始日志1 对多的形式拆分出来了。操作的时候我们需要将原始日志展平,需要用到 UDF 和 UDTF
1.2.2 自定义 UDF 函数(解析公共字段)
UDF 函数特点:一行进一行出。简称,一进一出
1)创建一个 maven 工程:hivefunction
2)创建包名:com.zsy.udf
3)在 pom.xml 文件中添加如下内容
<properties>
<hive.version>2.3.0</hive.version>
</properties>
<repositories>
<repository>
<id>spring-plugin</id>
<url>https://repo.spring.io/plugins-release/</url>
</repository>
</repositories>
<dependencies>
<!--添加 hive 依赖-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>${hive.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意 1:如果 hive 的 jar 包下载失败,可以将如下参数配置添加到 idea 中
-Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true
-Dmaven.wagon.http.ssl.ignore.validity.dates=true
详情请点击博客
标签:数仓,string,项目,object,json,dwd,get,event 来源: https://blog.csdn.net/qq_43733123/article/details/105904530