其他分享
首页 > 其他分享> > 支持向量机

支持向量机

作者:互联网

一、SVM算法原理及数学推导

1、支撑向量机,SVM(Support Vector Machine),其实就是一个线性分类器。在最初接到这个算法时,我们可能会一头雾水:这个名词好奇怪[问号脸],怎么“支持”?什么“向量”,哪来的“机”?

本篇文章从“不适定问题”开始介绍SVM的思想,通过支撑向量与最大间隔引申到如何将其转换为最优化问题,并数学推导求解有条件限制的最优化问题。相信学完本篇之后,大家一定会对SVM算法有一个大体上的认识。

 

1.1 分类中的“不适定问题”

首先,我们看一个简单的二分类问题。在二维的特征平面中,所有的数据点分为了两类:蓝色圆形和黄色三角。我们的目标是找到了一条决策边界,将数据分类。但实际上我们可以找到多条决策边界。

 

 这就所谓的“不适定问题”。“不适定问题”会影响模型的泛化性。比如在下面的模型中,被黄色箭头标出的点被决策边界划为蓝色圆点,但实际上它和黄色三角更近一些。也就说决策边界的选择,不仅要考虑已经存在的数据上的是否分类正确,还要考虑是否能够更好地划分未出现的测试数据:

 

 逻辑回归算法如何解决“不适定问题”问题呢?首先定义一个概率函数sigmoid函数:

 

二、SVM算法中的核函数

 

 

 

 

 

 

三、 SVM算法解决分类问题及回归问题

标签:SVM,不适,分类,支持,问题,算法,向量
来源: https://www.cnblogs.com/zym-yc/p/12822692.html