其他分享
首页 > 其他分享> > 逻辑归回

逻辑归回

作者:互联网

1.用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。

这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

如果是连续的,就是多重线性回归;
如果是二项分布,就是Logistic回归;
如果是Poisson分布,就是Poisson回归;
如果是负二项分布,就是负二项回归。
Logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的Logistic回归。

Logistic回归的主要用途:

寻找危险因素:寻找某一疾病的危险因素等;
预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。

 

2.自述一下什么是过拟合和欠拟合?

所谓过拟合(over-fitting)其实就是所建的机器学习模型或者是深度学习模型在训练样本中表现得过于优越,导致在验证数据集以及测试数据集中表现不佳。过拟合就是学到了很多没必要的特征,比如你说的长得像猫的狗,和长得像狗的猫,其实这只是特例,但神经网络为了更好的降低Loss,就只能被迫学习这些特征用来区分猫和狗。
所谓欠拟合呢(under-fitting)?相对过拟合欠拟合还是比较容易理解。还是拿刚才的模型来说,可能训练样本被提取的特征比较少,导致训练出来的模型不能很好地匹配,表现得很差,甚至样本本身都无法高效的识别。

3.思考一下逻辑回归的应用场景有哪些?

  ①识别客户是否流失。

  ②某广告被用户点击的可能性。

  ③某用户购买某商品的可能性。

  ④预测应用宝里用户是否会下载某个APP。

  ⑤在个人信用评估领域,预测申请人的信贷风险概率。

 

标签:逻辑,因变量,胃癌,归回,回归,Logistic,拟合,模型
来源: https://www.cnblogs.com/dtx123/p/12769436.html