其他分享
首页 > 其他分享> > Elasticsearch Query DSL之全文检索(Full text queries)下篇

Elasticsearch Query DSL之全文检索(Full text queries)下篇

作者:互联网

Elasticsearch Query DSL之全文检索(Full text queries)下篇

2019-06-10阅读 3600  

本文将继续介绍Elasticsearch Query DSL之全文检索(Full text queries)方式的后3种。

5、common terms query

该查询模式的定位:排除停用词或高频词对文档的匹配影响。提高文档匹配的精确度,同时不对性能产生影响。

我们来看一个停用词(高频词)对文档过滤帅选带来的影响:

查询字符串中的每个词根都有搜索成本。搜索“the brown fox”需要三个词根查询,分别为“The”、“brown”和“fox”,所有这些查询都是针对索引中的所有文档执行的。对于“The”的查询可能匹配许多文档,因此对相关性的影响要比其他两个术语小得多。

一种解决这个问题的方法是忽略高频项。通过将“the”视为stopword(停用词),我们可以减少索引大小,并减少需要执行的词根查询的数量。这种方法的问题在于,尽管停用词对相关性的影响很小,但它们仍然很重要。如果我们去掉stopwords,我们就会失去精确性(比如我们无法区分“快乐”和“不快乐”),我们就会失去回忆(比如像“The The The”或“to be or not to be”这样的文本就不会存在于索引中)。

本文将介绍另外一种方式来解决上述问题:

common terms query将查询词根分为两组:更重要的(即低频词根)和不那么重要的(即高频词根,以前应该是停用词),其工作方式如下:

首先,它搜索与更重要的词根(低频词)匹配的文档。这些术语出现在较少的文档中,对相关性的影响更大,性能更好。

然后,它对不太重要的词根(高频词)执行第二个查询。但是它并不会计算所有匹配(匹配高频词的所有文档)文档的相关得分,而是只计算第一个查询已经匹配的文档的_score。通过这种方式,高频项可以在不付出性能差的代价的情况下改进关联计算(低频词、高频次相互关联)。

如果查询只包含高频术语,那么一个查询将作为AND(连接)查询执行,换句话说,所有的词根都必须满足。尽管每个单独的词根将匹配许多文档,但术语组合将结果集缩小到最相关的部分,当然单个查询也可以指定至少多少个词根匹配即可(minimum_should_match)。

词根根据cutoff_frequency被分配给高频或低频组,可以指定为绝对频率(>=1)或相对频率(0.0)。1.0)。

5.1 示例详解

5.1.1 简单使用说明

GET /_search {
   "query": {
       "common": {
           "body": {
               "query": "this is bonsai cool",
               "cutoff_frequency": 0.001
           }        
       }    
   }
}

 

上述查询方式会对查询词根 this、is、bonsai、cool4个词根分词,词根频率小于0.001的bonsail、cool会被当成低频次,而this、is会被设置为高频词组。由于common term query将词根分成了低频组与高频组,故针对match query的operator、minimum_should_match分别由如下四个参数代替:

java rest api使用示例如下:

public static void testCommonQuery() {
       RestHighLevelClient client = EsClient.getClient();
       try {
           SearchRequest searchRequest = new SearchRequest();
           searchRequest.indices("esdemo");
           SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
           sourceBuilder.query(
                   QueryBuilders.commonTermsQuery("context", "this is brown fox")
                       .cutoffFrequency(0.001f)
                       .highFreqOperator(Operator.OR)
                       .highFreqMinimumShouldMatch("3")
                       .lowFreqOperator(Operator.OR)
                       .lowFreqMinimumShouldMatch("2")
                   );
           searchRequest.source(sourceBuilder);
           SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
           System.out.println(result);
       } catch (Throwable e) {
           e.printStackTrace();
       } finally {
           EsClient.close(client);
       }
   }

 

6、query_string query

查询字符串方式。query_string查询解析器支持对查询字符串按照操作符进行切割,每个部分独立分析,例如:

GET /_search
{
"query": {
"query_string": {
"default_field": "content",
"query": "(new york city) OR (big apple)"
}
}
}

 

qquery_string的顶层参数如下:uery_string的顶层参数如下:

query_string的顶层参数如下:

6.1 多字段支持(multi field)

query_string支持多字段查询,可通过fields属性指定,例如:

GET /_search
{
   "query": {
       "query_string" : {
           "fields" : ["content", "name"],
           "query" : "this AND that"
       }
   }
}

 

其含义类似于:"query": "(content:this OR name:this) AND (content:that OR name:that)"。

同时query_string(查询字符串)模式同样支持match_query等查询对应的参数,其工作机制一样,示例如下:

GET /_search
{
   "query": {
       "query_string" : {
           "fields" : ["content", "name^5"],
//          "fields" : ["city.*"],
           "query" : "this AND that OR thus",
           "tie_breaker" : 0,
           "type": "best_fields",
           "auto_generate_synonyms_phrase_query" : false    (同义词synonym机制)
       }
   }
}

  

6.2 支持通配符

查询字符串中支持使用通配符?与,其中?表示的单个字符,而表示0个或多个字符。查询字符串使用通配符,可能会消耗更多的内存,查询性能较低下。为了提高通配符效率,如果只是一个的话,命令就会被重写为存在查询(是否存在文档),例如fields:[""]。在关系型数据库中前置通配符(" ab"),这种查询是不支持索引查询的,在es中同样如此,需要遍历索引中所有词根,可以通过allow_leading_wildcard=false来禁用这种查询。通过将analyze_wildcard设置为true,将分析以结尾的查询,并从不同的令牌构建布尔查询,方法是确保第一个N-1令牌上的精确匹配,以及最后一个令牌上的前缀匹配。

6.3 支持正则表达式

正则表达式可以嵌入到查询字符串中,方法是将它们包装成斜杠("/")。注意allow_leading_wildcard无法控制正则表达式的行为。

6.4 邻近查询(可前可后)

虽然短语查询match_phrase(如“john smith”)要求所有的术语都按照完全相同的顺序进行查询,但是接近查询允许指定的单词进一步分开或以不同的顺序进行查询,并且也提供诸如match_query的slop属性。例如:"fox quick"~5。

6.5 范围查询

可以为日期、数字或字符串字段指定范围查询。包含范围用方括号[min到max]指定,排他范围用花括号{min到max}指定。例如如下:

6.6 搜索字符串权重提升

使用提高运算符^可以设置一个词根相比其他词根更加重要(相关性更高)。例如针对查询字符串"quick^2 fox",表明quick这个词根的重要性比fox重要2倍。该操作符也可以针对短语或组,一个组用()表示,示例如下:"john smith"^2 (foo bar)^4。

6.7 boolean运算

默认情况下,所有词根都是可选的,只要一个词根匹配即可(Opreator.OR),从上面得知通过修改default_operator可以改变其默认行为。ES还支持对查询字符串进行boolean运算。例如查询字符串“quick brown +fox -news”表示的含义是:

1、fox词根必须存在。

2、news词根必须不存在。

3、quick brown 可选。

也支持常见的布尔运算符AND, OR和NOT(也写为&&,||和!),但要注意,它们不遵守通常的优先规则,因此当多个运算符一起使用时,应该使用括号。例如,前面的查询可以改写为:((quick AND fox) OR (brown AND fox) OR fox) AND NOT news。

6.8 分组(grouping)

多个词根或子句可以用括号组合在一起,形成子查询,例如(quick OR brown) AND fox。

6.9 转义字符

在ES中,如下字符需要使用转义符合\,保留字符是:+ - = && || > < !(){ }[]”^ ~ * ?:\ /。

6.10 空查询

如果查询字符串为空或仅包含空白,则查询将生成空结果集。

6.11 query_string示例

public static void testQueryStringQuery_Query() {
       RestHighLevelClient client = EsClient.getClient();
       try {
           SearchRequest searchRequest = new SearchRequest();
           searchRequest.indices("esdemo");
           SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
           sourceBuilder.query(
//                    QueryBuilders.queryStringQuery("brown -fox")
//                    QueryBuilders.queryStringQuery("brown^8 fox^2")
                   QueryBuilders.queryStringQuery("(quick OR brown) AND fox")
                       .allowLeadingWildcard(false)
                       .field("context")
                       .field("title")
//                        .minimumShouldMatch("1")
                   );
           searchRequest.source(sourceBuilder);
           SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
           System.out.println(result);
       } catch (Throwable e) {
           e.printStackTrace();
       } finally {
           EsClient.close(client);
       }
   }

 

测试情况如下:

目前范围查询暂不知如何编写查询字符串,但ES专门通过QueryBuilders.rangeQuery(String name)返回RangeQueryBuilder,邻近查询未能编写Demo。

7、simple_query_string query

简单字符串查询模式。使用SimpleQueryParser解析上下文的查询。与常规的query_string查询不同,simple_query_string查询永远不会抛出异常,并丢弃查询的无效部分。下面是一个例子:

GET /_search
{
 "query": {
   "simple_query_string" : {
       "query": "\"fried eggs\" +(eggplant | potato) -frittata",
       "fields": ["title^5", "body"],
       "default_operator": "and"
   }
 }
}

 

查询字符串的写法非常符合(query_string)中定义的,例如查询字符串中支持boolean运算等。simple_query_string中的顶级参数都定义在org.elasticsearch.index.query.SimpleQueryStringBuilder中,其含义与query_string中类似,在这里就不重复介绍了。

simple_query_string支持如下写法。

上述这些写法与在query_string机制一样。接下来主要再讲述query_string不同点。

7.1 flags

simple_query_string支持多个标记来指定应该启用哪些解析特性。它被指定为一个|分隔的字符串,例如:

GET /_search
{
   "query": {
       "simple_query_string" : {
           "query" : "foo | bar + baz*",
           "flags" : "OR|AND|PREFIX"
       }
   }
}

  

可用的flag的列表如下:ALL, NONE, AND, OR, NOT, PREFIX, PHRASE, PRECEDENCE, ESCAPE, WHITESPACE, FUZZY, NEAR, and SLOP。

7.2 使用示例

public static void testSimpleQueryString_Query() {
       RestHighLevelClient client = EsClient.getClient();
       try {
           SearchRequest searchRequest = new SearchRequest();
           searchRequest.indices("esdemo");
           SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
           sourceBuilder.query(
                   QueryBuilders.simpleQueryStringQuery("brown -fox")
                   );
           searchRequest.source(sourceBuilder);
           SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
           System.out.println(result);
       } catch (Throwable e) {
           e.printStackTrace();
       } finally {
           EsClient.close(client);
       }
   }

 

全文索引查询就介绍到这里了,下节开始将介绍Elasticsearch DSL term query(词根匹配)。

本文分享自微信公众号 - 中间件兴趣圈(dingwpmz_zjj)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-11-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

标签:Full,string,text,fox,查询,全文检索,字符串,query,词根
来源: https://www.cnblogs.com/cdchencw/p/12492874.html