Keras - 加载预训练模型并冻结网络的层
作者:互联网
目录
在解决一个任务时,我会选择加载预训练模型并逐步fine-tune。比如,分类任务中,优异的深度学习网络有很多。ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用。根据自己的任务,训练一下最后的分类层即可得到比较好的结果。此时,就需要“冻结”预训练模型的所有层,即这些层的权重永不会更新。以Xception为例:
加载预训练模型:
from tensorflow.python.keras.applications import Xception
model = Sequential()
model.add(Xception(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(NUM_CLASS, activation='softmax'))
include_top = False : 不包含顶层的3个全链接网络
weights : 加载预训练权重
随后,根据自己的分类任务加一层网络即可。
网络具体参数:
model.summary
得到两个网络层,第一层是xception层,第二层为分类层。
由于未冻结任何层,trainable params为:20, 811, 050
冻结网络层:
由于第一层为xception,不想更新xception层的参数,可以加以下代码:
model.layers[0].trainable = False
冻结预训练模型中的层
如果想冻结xception中的部分层,可以如下操作:
from tensorflow.python.keras.applications import Xception
model = Sequential()
model.add(Xception(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(NUM_CLASS, activation='softmax'))
for i, layer in enumerate(model.layers[0].layers):
if i > 115:
layer.trainable = True
else:
layer.trainable = False
print(i, layer.name, layer.trainable)
加载所有预训练模型的层
若想把xeption的所有层应用在训练自己的数据,并改变分类数。可以如下操作:
model = Sequential()
model.add(Xception(include_top=True, weights=None, classes=NUM_CLASS))
- * 如果想指定classes,有两个条件:include_top:True, weights:None。否则无法指定classes
标签:冻结,训练,Keras,模型,model,Xception,加载 来源: https://blog.csdn.net/infinite_jason/article/details/104630268