ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

《Adaptive Density Map Generation for Crowd Counting》密集人群检测论文笔记

2020-02-28 17:00:40  阅读:535  来源: 互联网

标签:Map 高斯 Crowd Density 手动 网络 生成 密度 loss


背景

密度图\(D_g\)的生成对于最终网络预测结果\(D_e\)至关重要,但是密度图\(D_g\)生成的过程中,高斯核的大小常常是手动设定的,并且对于不同的数据集,核大小和形状通常不一样。这些手动选择的参数,对网络来说可能不是最优的。

本文贡献

验证手动选择的高斯核不是最优的

为了验证手动选择的高斯核不是最优的,作者设计了一个Density Map Refinement网络,如下

下半部分是一个Refiner网络,将手动生成的密度图\(D_g\)进行refine,生成更为精细的密度图\(D_{g'}\),作为上半部分Counter网络的回归目标。上半部分的网络为正常的预测密度图\(D_e\)的网络。将原有的密度图\(D_g\)Refine后,可以看到,网络的效果确实提升了,证实了作者观点。

提出了一个自适应生成密度图的方法

尽管前面提出的Refiner网络能够提升网络精度,但是仍然依赖于前期手动选择参数生成的密度图\(D_g\)。为了克服这个弊端,作者设计了一个自适应生成密度图\(D_g\)的网络,如下

第一行与前面提到的网络没有什么区别,主要改动是将下面的Refiner网络改成了自适应生成密度图的网络。首先,预先给定K个高斯核,与标注的点图作用生成K个密度图\(B_i\),然后每个密度图经过self-attention网络,生成对应的attention map,将attention map和对应的\(B_i\)按像素相乘,就能够自适应地选择输入图片每个区域使用哪种核,最后一起送入fusion模块进行融合,就得到了密度图\(D_g\),与第一行的Counter网络一起,完成整个网络的训练。
下图是使用后的效果

这里有一点要说明,作者尝试了不预先设定K个高斯核的参数,改为网络自适应学习高斯核参数,发现效果均不如固定设置的

其中global loss, spatial loss, hard norm是自适应网络在不同loss下的表现,高斯核途中,第一行表示固定高斯核参数,第二三行表示不同loss下学得的高斯核形状

标签:Map,高斯,Crowd,Density,手动,网络,生成,密度,loss
来源: https://www.cnblogs.com/rookiechenv587/p/12377401.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有