其他分享
首页 > 其他分享> > hdu 1007 Quoit Design(平面最近点对)

hdu 1007 Quoit Design(平面最近点对)

作者:互联网

题意:求平面最近点对之间的距离

解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2).

  如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何求跨两边点之间的答案呢?显然只用枚举中线两边d=min(d1,d2)范围的点,并且每个点都只需要枚举上下范围在d以内的点,显然这样的点不会很多。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <map>
using namespace std;
typedef long long ll;
const double inf=1e20;
const int maxn=100005;

struct Point{
    double x, y;
}point[maxn];

int n, mpt[maxn];

//以x为基准排序
bool cmpxy(const Point &a,const Point &b){
    if(a.x!=b.x)
        return a.x<b.x;
    return a.y<b.y;
}

bool cmpy(const int &a,const int &b){
    return point[a].y<point[b].y;
}

double min(double a,double b){
    return a<b?a:b;
}

double dis(int i,int j){
    return sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y));
}

double Closest_Pair(int left, int right){
    double d=inf;
    if(left==right)
        return d;
    if(left+1==right)
        return dis(left,right);
    int mid=(left+right)>>1;
    double d1=Closest_Pair(left,mid);
    double d2=Closest_Pair(mid+1,right);
    d=min(d1,d2);
    int i,j,k=0;
    //分离出宽度为d的区间
    for(i=left;i<=right;i++){
        if(fabs(point[mid].x-point[i].x)<=d)
            mpt[k++]=i;
    }
    sort(mpt,mpt+k,cmpy);
    //线性扫描
    for(i=0;i<k;i++){
        for(j=i+1;j<k&&point[mpt[j]].y-point[mpt[i]].y<d; j++){
            double d3=dis(mpt[i],mpt[j]);
            if(d>d3)d=d3;
        }
    }
    return d;
}

int main(){
    while(scanf("%d",&n)!=EOF){
        if(n==0)break;
        for(int i=0;i<n;i++)
            scanf("%lf%lf",&point[i].x,&point[i].y);
        sort(point,point+n,cmpxy);
        printf("%.2lf\n",Closest_Pair(0,n-1)/2);
    }
    return 0;
}

 

标签:hdu,const,int,Quoit,枚举,Design,include,d2,d1
来源: https://www.cnblogs.com/wz-archer/p/12356961.html