其他分享
首页 > 其他分享> > 自动求梯度(pytorch版本)——2.20

自动求梯度(pytorch版本)——2.20

作者:互联网

一、Tensor用于自动求梯度

"tensor"这个单词⼀般可译作“张量”,张量可以看作是⼀个多维数组。标量可以看作是0维张量,向量可以看作1维张量,矩阵可以看作是⼆维张量。

    在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd 包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播。本节将介绍如何使⽤autograd包来进⾏⾃动求梯度的有关操作。

概念
    Pytorch中的Tensor 是这个包的核⼼类,如果将其属性 .requires_grad 设置为 True ,它将开始追踪(track)在其上的所有操作(这样就可以利⽤链式法则进⾏梯度传播了)。完成计算后,可以调⽤ .backward() 来完成所有梯度计算。此 Tensor 的梯度将累积到 .grad 属性中。

注意在 y.backward() 时,如果 y 是标量,则不需要为backward()传⼊任何参数;否则,需要传⼊⼀个与 y同形的 Tensor

    如果不想要被继续追踪,可以调⽤ .detach() 将其从追踪记录中分离出来,这样就可以防⽌将来的计算被追踪,这样梯度就传不过去了。此外,还可以⽤ with torch.no_grad() 将不想被追踪的操作代码块包裹起来,这种⽅法在评估模型的时候很常⽤,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。

    Function 是另外⼀个很᯿要的类。 TensorFunction 互相结合就可以构建⼀个记录有整个计算过程的有向⽆环图(DAG)。每个 Tensor 都有⼀个 .grad_fn 属性,该属性即创建该 TensorFunction , 就是说该 Tensor 是不是通过某些运算得到的,若是,则 grad_fn 返回⼀个与这些运算相关的对象,否则是None。

import torch

# 通过设置`requires_grad=Ytue`,使得操作通过链式法则进行梯度传播
x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)

+的运算操作
y = x+2
print(y)
print(y.grad_fn)
print(x.is_leaf,y.is_leaf)

# 复杂一点的运算操作
z = y*y*2
print(z)
print(z.grad_fn)
out = z.mean()
print(z, out)

    输出结果:

标签:Tensor,梯度,张量,pytorch,print,2.20,grad,fn
来源: https://www.cnblogs.com/somedayLi/p/12339625.html