其他分享
首页 > 其他分享> > FOC 电流采样方案对比(单电阻/双电阻/三电阻)

FOC 电流采样方案对比(单电阻/双电阻/三电阻)

作者:互联网

文章目录

需要资料可以私信,博主不在的可以留言邮箱,届时邮件发送;
需要资料可以私信,博主不在的可以留言邮箱,届时邮件发送;
需要资料可以私信,博主不在的可以留言邮箱,届时邮件发送;
不要白嫖,帮忙点个赞;
不要白嫖,帮忙点个赞;
不要白嫖,帮忙点个赞;

电流采样的作用

在FOC算法中,电流采样在反馈环节是相当重要的一部分,无论是有感FOC,还是无感FOC,相电流是交流三相同步电机在进行坐标变换的关键,最终通过SVPWM实现电机转子磁场和定子磁场的同步转动,通常这里有三种方案,单电阻采样,双电阻采样,三电阻采样,关系到整体系统的成本,算法的复杂程度和最终运行的效果,这里需要更加项目的具体需求进行选择。本文参考ST的单电阻和三电阻采样以及TI的双电阻采样,还有microchip的资料,结合实际中可能需要注意的地方进行总结分析。

几种电流采样方案的对比;

电流采样 成本 算法
单电阻 复杂
双电阻 适中 适中
三电阻 简单

硬件架构

硬件上的设计通常是采集三相电流,通过运算放大器加偏置电压,这样可以就可以采集正负电流,最终在MCU中处理的时候减去偏置电压就行,以Infineon XC167CI SK Board单电阻的方案为例子,具体电路拓扑图如下;
在这里插入图片描述
下面是TI C2000 的方案
在这里插入图片描述

AP1608410 原文链接
运算放大器
在这里插入图片描述

采样关键

采样的关键是需要在三相整流桥高端关闭,低端打开的情况下进行采样,这是整体的采样点。因此,采样会存在窗口时间,因为ADC转换完成需要一定数量级的时间,也就是说,在ADC转换完成之前,整流桥低端是不能关闭的,在这里,双电阻和单电阻采样需要考虑窗口时间的限制,而三电阻采样则不存在窗口时间(PWM占空比接近100%),可以根据SVPWM当前所在象限,进行分类,只需要采集其中不受窗口时间限制的两相电流,然后根据 Ia+Ib+Ic=0I_{a}+I_{b}+I_{c} = 0Ia​+Ib​+Ic​=0,进行电流的重构。

采样方案

电流采样比较关键的地方主要是硬件的设计和采样点的设置,这里在后面会涉及到通过相应的触发信号去通知ADC进行电流采样,最后进行电流重构。

三电阻采样

TI的三电阻采样
在这里插入图片描述

三电阻采样点

正如前面所提到的三电阻采样可以避免窗口时间,如下图所示;在不同扇区需要采样的相电流,可以看到,共同点是避免去采样PWM占空比接近100%的那一相电流。
在这里插入图片描述
可以参考一下ST的电机库的做法,通过TIMER_CH4作为ADC采样的触发信号,而采样则可以通过修改TIM_CCR4寄存器去改变采样点,相当灵活的做法;
在这里插入图片描述

双电阻采样

双电阻采样无法避免窗口时间,所以需要限制最终PWM的占空比,为ADC转换预留足够的时间;
在这里插入图片描述

双电阻采样点

在这里插入图片描述

单电阻采样

单电阻采样需要在一个PWM周期内进行两次采样,下面需要在SVPWM六个扇区进行相电流的分类,这里可以对SVPWM的原理进行分析,从而了解如何对电流进行重构;单电阻的电路结构如下图所示;
在这里插入图片描述
为了便于理解整个采样的过程,为了表示逆变器的开关管的状态,
Sa表示A相的上下管,同理Sb表示B相的上下管;
这里规定:
Sa = 1表示上管导通,下管断开;
Sa = 0表示下管导通,上管断开;

SbSc以此类推;

Sa Sb Sc:100

在这里插入图片描述

Sa Sb Sc:110

在这里插入图片描述

SVPWM的开关状态

开关状态 AH BH CH 电流
0 0 0 0 0
1 1 0 0 IAI_{A}IA​
2 1 1 0 IC-I_{C}−IC​
3 0 1 0 IBI_{B}IB​
4 0 1 1 IA-I_{A}−IA​
5 0 0 1 ICI_{C}IC​
6 1 0 1 IBI_{B}IB​
7 1 1 1 0

因此,单电阻采样,需要在一个PWM周期内进行两次采样;具体如下图所示;
在这里插入图片描述
在一个周期内分别进行了Sample 1Sample 2这两次采样,对照上表可以推出;

原理搞清楚之后,下面要注意的地方还有两点采样点的确认和窗口时间的限制;

ST方案

在这里插入图片描述

附录

microchip 资料汇总
TI 1-, 2-, and 3-Shunt FOC Inverter Reference Design

UncleMac 发布了88 篇原创文章 · 获赞 52 · 访问量 8万+ 私信 关注

标签:采样,电阻,FOC,Sc,Sb,Sa,电流
来源: https://blog.csdn.net/u010632165/article/details/104081421