其他分享
首页 > 其他分享> > 卢卡斯定理模板

卢卡斯定理模板

作者:互联网

3.卢卡斯定理

可用于求组合数mod p的值,其公式为:

\[ C_{n}^{k}=(C_{\frac{n}{p}}^{\frac{k}{p}}*C_{n\%p}^{k\%p})\% p \]

上模板:

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
typedef long long ll;
int T;
ll n, m, p;
ll j[N];
ll pow(ll a, ll b, ll p)
{
    ll res = 1;
    for (; b; b >>= 1)
    {
        if (b & 1)
            res = (res * a) % p;
        a = a * a % p;
    }
    return res;
}
ll C(ll n, ll m)
{
    if (m > n)
        return 0;
    return ((j[n] * pow(j[m], p - 2, p)) % p * pow(j[n - m], p - 2, p) % p);
}
ll Lucas(ll n, ll m)
{
    if (!m)
        return 1;
    return C(n % p, m % p) * Lucas(n / p, m / p) % p;
}

int main()
{
    j[0] = 1;
    cin >> T;
    while (T--)
    {
        cin >> n >> m >> p;
        for (int i = 1; i <= p; i++)
            j[i] = j[i - 1] * i % p;
        cout << Lucas(n + m, n) << endl;
    }
    system("pause");
    return 0;
}

标签:return,int,res,定理,long,pow,卢卡斯,ll,模板
来源: https://www.cnblogs.com/StungYep/p/12253913.html