其他分享
首页 > 其他分享> > 修剪草坪 HYSBZ - 2442

修剪草坪 HYSBZ - 2442

作者:互联网

在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。

Input


* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i


Output


* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input5 2 1 2 3 4 5 输入解释: FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是 他不能选取超过2只连续的奶牛

Sample Output 12 FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。

 思路:单调队列优化dp板子题,子问题可以归结为:dp[i][0/1],表示选/不选第i只牛,到第i只为止最大的效率,维护一个前缀和sum

dp[i][0] = max(dp[i-1][0], dp[i-1][1]), dp[i][1] = max(dp[j][0]-sum[j]+sum[i]) (i-k < j < i)

注意在单调队列中事先存在一个元素0,表示左边界

typedef long long LL;

const int maxm = 1e5+5; 

LL sum[maxm], dp[maxm][2], q[maxm];

int main() {
    ios::sync_with_stdio(false), cin.tie(0);
    LL n, k, val;
    cin >> n >> k;
    for(LL i = 1; i <= n; ++i) {
        cin >> val;
        sum[i] = sum[i-1] + val;
    }
    int l = 0, r = 0;
    for(LL i = 1; i <= n; ++i) {
        dp[i][0] = max(dp[i-1][0], dp[i-1][1]);
        while(l <= r && i-k > q[l]) l++;
        dp[i][1] = dp[q[l]][0] - sum[q[l]] + sum[i];
        while(l <= r && dp[q[r]][0]-sum[q[r]] < dp[i][0]-sum[i]) r--;
        q[++r] = i;
    }
    cout << max(dp[n][0], dp[n][1]) << "\n";
    return 0;
}
View Code

 

标签:2442,修剪,HYSBZ,sum,效率,FJ,奶牛,LL,dp
来源: https://www.cnblogs.com/GRedComeT/p/12235043.html