SGU-253 Theodore Roosevelt
作者:互联网
题意:
题目链接
给一个\(n\)边形(凸多边形),再给出\(m\)个点,求有多少个点落在多边形内部(含边界),点的坐标均为整数\(n,m<=2*10^5\)
思路:
数据范围较大,不能一条边一条边枚举
考虑二分。而后用叉积解决。
因为本题多边形为逆时针给出,因此基准点随便选。
注意事项:
考虑点在某条边上,那么二分到此处时叉积为0
但是要注意,如果该点在这条边所在直线上,那么叉积也为0,要特判一下
还有,因为有叉乘,所以要开long long
code:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m,k,pos,mn=1e9,ans;
struct point{long long x,y;long long dis(){return x*x+y*y;}}b[N];
point operator-(point x,point y){return (point){x.x-y.x,x.y-y.y};}
long long operator^(point x,point y){return x.x*y.y-x.y*y.x;}
inline int read()
{
int s=0,w=1; char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')w=-1;
for(;isdigit(ch);ch=getchar())s=(s<<1)+(s<<3)+(ch^48);
return s*w;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;++i)
b[i].x=read(),b[i].y=read();
while(m--)
{
point u;
u.x=read(),u.y=read();
int l=1,r=n;
while(l<r)
{
int mid=(l+r+1)>>1;
if(((b[mid]-b[1])^(u-b[1]))<0)r=mid-1;
else l=mid;
}
r=(l==n?1:l+1);
long long e=(b[l]-u)^(b[r]-u);
if(e>0)++ans;
else if(e==0)
{
long long dist=(b[l]-b[r]).dis();
if((b[l]-u).dis()<=dist&&(b[r]-u).dis()<=dist)++ans;
}
}
if(ans>=k) puts("YES");
else puts("NO");
return 0;
}
标签:ch,return,point,Theodore,SGU,long,int,253,dis 来源: https://www.cnblogs.com/zmyzmy/p/12227905.html