数据倾斜及解决办法
作者:互联网
一、什么是数据倾斜
简单来说数据倾斜就是数据的key 的分化严重不均,造成一部分数据很多,一部分数据很少的局面。对于集群系统,一般缓存是分布式的,即不同节点负责一定范围的缓存数据。我们把缓存数据分散度不够,导致大量的缓存数据集中到了一台或者几台服务节点上,称为数据倾斜。一般来说数据倾斜是由于负载均衡实施的效果不好引起的。
举例说明:
举个 word count 的入门例子: 它的map 阶段就是形成 (“aaa”,1)的形式,然后在reduce 阶段进行 value 相加,得出 “aaa” 出现的次数。若进行 word count 的文本有100G,其中 80G 全部是 “aaa” 剩下 20G 是其余单词,那就会形成 80G 的数据量交给一个 reduce 进行相加,其余 20G 根据 key 不同分散到不同 reduce 进行相加的情况。如此就造成了数据倾斜,临床反应就是 reduce 跑到 99%然后一直在原地等着 那80G 的reduce 跑完。
二、造成数据倾斜的原因
1)key分布不均匀
(2)业务数据本身的特性
(3)建表时考虑不周
(4)某些SQL语句本身就有数据倾斜
标签:解决办法,倾斜,reduce,缓存数据,key,aaa,数据 来源: https://blog.csdn.net/ZZQHELLO2018/article/details/104019783