sklearn-Kmeans
作者:互联网
Kmeans,使用sklearn实现
1 from sklearn.cluster import KMeans 2 import numpy as np 3 X = np.array([[1, 2], [1, 4], [1, 0], 4 [10, 2], [10, 4], [10, 0]]) 5 kmeans = KMeans(n_clusters=2, random_state=0).fit(X) 6 labels = kmeans.labels_ # 标签,默认从0开始 7 centers = kmeans.cluster_centers_ # 聚簇中心 8 print('labels:',labels) 9 print('centers:',centers) 10 print('----------------') 11 print(centers[labels]) # 将每个点对应的聚簇中心打印出来
打印结果:
labels: [1 1 1 0 0 0]
centers: [[10. 2.]
[ 1. 2.]]
----------------
[[ 1. 2.]
[ 1. 2.]
[ 1. 2.]
[10. 2.]
[10. 2.]
[10. 2.]]
标签:10,labels,Kmeans,kmeans,print,centers,sklearn 来源: https://www.cnblogs.com/shuangcao/p/12171917.html