标签:wire IP app MIG rd ddr wr DDR3 data
上一节中,记录到了ddr控制器的整体架构,在本节中,准备把ddr控制器的各个模块完善一下。
可以看到上一节中介绍了DDR控制器的整体架构,因为这几周事情多,又要课设什么的麻烦,今天抽点时间把这个记录完了,不然以后都忘了DDR该咋去控制了。
从本次实验的整体功能模块可以看出,最终我们只需要用户操作的信号为用户写入的256bit数据wr_ddr_data,写开始信号wr_start,数据请求信号data_req,读开始信号rd_start,读出的数据rd_ddr_data,读数据有效信号rd_data_vld,读结束和写结束信号rd_done、wr_done,ddr忙碌信号ddr_busy;
接下来我们将从顶层模块开始介绍各个模块实现的功能。
1) 顶层模块:
在顶层模块中,我们主要介绍用户相关的接口,在DDR3 存储器一侧的信号不做过多介绍
端口名称 |
I/O |
位宽 |
备注 |
wr_ddr_data |
I |
256 |
用户写入的256bit数据 |
data_req |
O |
1 |
向上游模块请求数据信号 |
wr_start |
I |
1 |
一次写ddr开始信号 |
wr_done |
O |
1 |
一次写ddr结束信号 |
rd_start |
I |
1 |
读开始信号 |
rd_data_vld |
O |
1 |
读出数据有效信号 |
rd_ddr_data |
O |
256 |
读出的有效数据 |
rd_done |
O |
1 |
一次突发读数据结束信号 |
ddr_busy |
O |
1 |
当前控制器处于忙碌状态 |
用户通过这些信号,能够较为简单地实现对DDR的访问。
2) 用户写控制模块
该模块的主要作用是,在接收到上游模块发送过来的写开始信号后,从上游模块将要写入DDR的数据请求而来,并将数据写入到DDR中。本模块的结构如下:
各个信号的作用如下表所示:
端口名称 |
I/O |
位宽 |
备注 |
ui_clk |
I |
1 |
系统时钟100M |
rst |
I |
1 |
系统复位,同步复位 |
wr_start |
I |
1 |
写开始信号 |
wr_ddr_data |
I |
256 |
用户写入的256bit数据 |
dta_req |
O |
1 |
向上游模块请求数据信号 |
wr_busy |
O |
1 |
当前模块正处于写忙碌状态 |
wr_done |
O |
1 |
一次写结束信号 |
wr_req |
O |
1 |
写请求信号,给到仲裁模块做总裁 |
wr_ack |
I |
1 |
写响应信号,仲裁模块给回的写响应 |
app_wdf_mask |
O |
32 |
32bit写入数据掩码 |
app_wdf_data |
O |
256 |
写入到DDR的数据 |
app_wdf_wren |
O |
1 |
当前写入数据有效信号 |
app_wdf_end |
O |
1 |
当前数据是ddr一次8突发的最后一个数据 |
app_wdf_rdy |
I |
1 |
当前MIG IP写数据通道处于空闲状态 |
app_rdy |
I |
1 |
当前MIG IP命令通道处于空闲状态 |
app_cmd |
O |
3 |
写数据命令3’b000 |
app_en |
O |
1 |
命令使能信号 |
app_addr |
O |
29 |
要访问的内存地址 |
关于本模块的代码设计,可以参考本模块的时序波形图,本模块状态跳转图如下,在IDLE状态下,若接收到写开始信号wr_start,则进入写请求状态,同时产生写请求wr_req给到仲裁模块,若当前可以进行写操作,则仲裁模块将会给出一个写响应信号wr_ack,接收到响应过后将跳转如写数据状态,从上游模块请求数据并给出写命令和地址,把数据写入到DDR中。
时序设计图如下:
对时序图做简单说明:进入写状态后,将使能app_wdf_wren信号,于此同时data_req信号在app_wdf_wren和app_wdf_rdy同时有效时才为有效,从而向上游模块请求数据,在写模块中,一次写操作需要向上游模块请求64个256bit数据。app_en在app_wdf_wren一个周期后拉高,然后再app_rdy和app_en同时有效的时候,需要给出写入ddr的地址,写入ddr的地址每次需要增加8,这是因为我们写入的数据是256bit,而ddr内存一个地址的容量是32bit,一次写入256bit地址正好增加8。当全部64个数据写入完成后,将产生一个写结束信号,指示本次写操作已经完成。在写状态时,拉高wr_busy指示当前模块正处于写忙碌的状态。
1 /*============================================================================= 2 # 3 # Author: weichaochen - 1530604142@qq.com 4 # 5 # QQ : 1530604142 6 # 7 # Last modified: 2019-12-29 19:28 8 # 9 # Filename: ddr_wr_ctrl.v 10 # 11 # Description: 12 # 13 =============================================================================*/ 14 `timescale 1ns / 1ps 15 16 module ddr_wr_ctrl( 17 input wire ui_clk ,//ddr3工作时钟 18 input wire rst ,//系统复位 19 input wire wr_start ,//写开始信号 20 output wire data_req ,//请求写数据信号 21 input wire [255:0] wr_ddr_data ,//将要写入的数据 22 23 output wire wr_req ,//写数据请求 24 input wire wr_ack ,//写响应 25 output wire wr_done ,//一次写结束 26 output wire wr_busy ,//当前处于忙碌状态 27 28 input wire app_rdy ,//命令通道空闲 29 output wire [2:0] app_cmd ,//输出的控制命令 30 output wire app_en ,//命令使能 31 output wire [28:0] app_addr ,//输出的地址 32 33 input wire app_wdf_rdy ,//写数据通道空闲信号 34 output wire [255:0] app_wdf_data,//写入的数据 35 output wire app_wdf_wren,//写入数据使能 36 output wire app_wdf_end ,//当前数据是DDR一次突发的最后一个数据 37 output wire [31:0] app_wdf_mask //写入数据掩码 38 ); 39 40 //============================================= 41 //parameter define 42 //============================================= 43 parameter IDLE = 3'b001; 44 parameter WR_REQ = 3'b010; 45 parameter WRITE = 3'b100; 46 47 parameter TOTAL_PIXEL = 1024 * 768 - 8; 48 parameter BURST_LEN = 64 - 1; 49 50 //============================================= 51 //internal siganl 52 //============================================= 53 reg [2:0] state ;//状态寄存器 54 55 reg [9:0] cnt_data ;//计数当前写入的数据 56 wire add_cnt_data ; 57 wire end_cnt_data ; 58 59 reg [9:0] cnt_cmd ;//计数当前已经给出的命令 60 wire add_cnt_cmd ; 61 wire end_cnt_cmd ; 62 63 reg app_wdf_wren_r ;//写入数据有效 64 reg app_en_r ;//命令有效信号 65 reg [28:0] app_addr_r ;//写入的地址 66 67 reg wr_done_r ;//一次写完成 68 reg wr_req_r ;//写请求 69 70 71 72 73 assign app_cmd = 3'b000; //写命令 74 assign app_wdf_mask = 32'd0; //写数据掩码 75 assign app_wdf_wren = app_wdf_wren_r; 76 assign app_en = app_en_r ; 77 assign app_addr= app_addr_r; 78 assign app_wdf_data = wr_ddr_data; 79 assign wr_done = wr_done_r; 80 assign wr_busy = state==WRITE; 81 assign wr_req = wr_req_r; 82 assign app_wdf_end = app_wdf_wren_r; 83 84 assign data_req = app_wdf_wren_r & app_wdf_rdy;//向上游模块请求数据 85 86 87 //--------------------state machine describe-------------------- 88 always @(posedge ui_clk)begin 89 if(rst == 1'b1)begin 90 state <= IDLE; 91 end 92 else begin 93 case(state) 94 IDLE:begin 95 if(wr_start==1'b1) 96 state <= WR_REQ; 97 else 98 state <= IDLE; 99 end 100 101 WR_REQ:begin 102 if(wr_ack) 103 state <= WRITE; 104 else 105 state <= WR_REQ; 106 end 107 108 WRITE:begin 109 if(end_cnt_cmd) 110 state <= IDLE; 111 else 112 state <= WRITE; 113 end 114 115 default:begin 116 state <= IDLE; 117 end 118 endcase 119 end 120 end 121 122 123 //--------------------app_wdf_wren_r-------------------- 124 always @(posedge ui_clk)begin 125 if(rst == 1'b1)begin 126 app_wdf_wren_r <= 1'b0; 127 end 128 else if(end_cnt_data)begin 129 app_wdf_wren_r <= 1'b0; 130 end 131 else if(state==WR_REQ && wr_ack==1'b1)begin 132 app_wdf_wren_r <= 1'b1; 133 end 134 end 135 136 //--------------------cnt_data-------------------- 137 always @(posedge ui_clk)begin 138 if(rst==1'b1)begin 139 cnt_data <= 0; 140 end 141 else if(add_cnt_data)begin 142 if(end_cnt_data) 143 cnt_data <= 0; 144 else 145 cnt_data <= cnt_data + 1'b1; 146 end 147 end 148 149 assign add_cnt_data = data_req; 150 assign end_cnt_data = add_cnt_data && cnt_data== BURST_LEN; 151 152 //--------------------app_en_r-------------------- 153 always @(posedge ui_clk)begin 154 if(rst == 1'b1)begin 155 app_en_r <= 1'b0; 156 end 157 else if(end_cnt_cmd)begin 158 app_en_r <= 1'b0; 159 end 160 else if(app_wdf_wren_r==1'b1)begin 161 app_en_r <= 1'b1; 162 end 163 end 164 165 //--------------------cnt_cmd-------------------- 166 always @(posedge ui_clk)begin 167 if(rst==1'b1)begin 168 cnt_cmd <= 0; 169 end 170 else if(add_cnt_cmd)begin 171 if(end_cnt_cmd) 172 cnt_cmd <= 0; 173 else 174 cnt_cmd <= cnt_cmd + 1'b1; 175 end 176 end 177 178 assign add_cnt_cmd = app_rdy & app_en_r; 179 assign end_cnt_cmd = add_cnt_cmd && cnt_cmd== BURST_LEN; 180 181 //--------------------app_addr_r-------------------- 182 always @(posedge ui_clk)begin 183 if(rst == 1'b1)begin 184 app_addr_r <= 'd0; 185 end 186 else if(app_addr_r == TOTAL_PIXEL && app_en_r==1'b1 && app_rdy==1'b1)begin 187 app_addr_r <= 'd0; 188 end 189 else if(app_en_r==1'b1 && app_rdy==1'b1)begin 190 app_addr_r <= app_addr_r + 'd8; 191 end 192 end 193 194 //--------------------wr_done_r-------------------- 195 always @(posedge ui_clk)begin 196 if(rst == 1'b1)begin 197 wr_done_r <= 1'b0; 198 end 199 else if(end_cnt_cmd==1'b1)begin 200 wr_done_r <= 1'b1; 201 end 202 else begin 203 wr_done_r <= 1'b0; 204 end 205 end 206 207 //--------------------wr_req_r-------------------- 208 always @(posedge ui_clk)begin 209 if(rst == 1'b1)begin 210 wr_req_r <= 1'b0; 211 end 212 else if(wr_ack==1'b1)begin 213 wr_req_r <= 1'b0; 214 end 215 else if(state==IDLE && wr_start==1'b1)begin 216 wr_req_r <= 1'b1; 217 end 218 end 219 220 endmodule
3) 用户读控制模块
本模块的作用是,当接收到读开始信号rd_start后,本模块产生读命令将数据从ddr中读出来,并将数据给到下游模块,本模块的结构图如下:
各个信号的作用如下表所示:
端口名称 |
I/O |
位宽 |
备注 |
ui_clk |
I |
1 |
系统时钟100M |
rst |
I |
1 |
系统复位,同步复位 |
rd_start |
I |
1 |
读开始信号 |
rd_ddra_data |
O |
256 |
从DDR中读出的数据 |
rd_data_vld |
O |
1 |
读出数据有效信号 |
rd_req |
O |
1 |
读请求信号,给到仲裁模块做判断 |
rd_ack |
I |
1 |
读响应信号,仲裁模块对读请求的响应 |
rd_done |
O |
1 |
一次读操作完成信号 |
rd_busy |
O |
1 |
当前模块正处于读忙碌状态 |
app_rdy |
I |
1 |
当前命令通道处于空闲状态 |
app_addr |
O |
29 |
读DDR的内存地址 |
app_en |
O |
1 |
读命令有效信号 |
app_cmd |
O |
3 |
读DDR的命令3’b001 |
app_rd_data |
I |
256 |
从DDR中读出的数据 |
app_rd_data_vld |
I |
1 |
从DDR中读出数据有效信号 |
app_rd_data_end |
I |
1 |
当前数据是DDR8突发的最后一个数据 |
本模块功能设计,可以参考用户读控制波形图,本模块的状态跳转图如下:若在空闲状态下接收到写开始信号rd_start则状态跳转到写请求状态,并给出写读请求信号rd_req,若接收到仲裁模块给出的读响应信号rd_ack,则跳转入读数据状态,将数据从ddr中读出。当读完64个数据后跳转回空闲状态。
本模块的时序设计如下:
在读状态下,将使能app_en信号,同时开始计数当前给出了多少个命令,在读模块中,一次读操作同样对应了64个数据,这样就与前面的写模块具有相同的长度,能够在读写速度上匹配,避免读写的冲突。当读完全部64个数据后,将给出读结束信号rd_done指示本次读操作已经完成,本模块处于读状态时,将使能rd_busy信号,指示本模块当前正忙碌。
1 /*============================================================================= 2 # 3 # Author: weichaochen - 1530604142@qq.com 4 # 5 # QQ : 1530604142 6 # 7 # Last modified: 2019-12-29 19:32 8 # 9 # Filename: ddr_rd_ctrl.v 10 # 11 # Description: 12 # 13 =============================================================================*/ 14 15 `timescale 1ns / 1ps 16 module ddr_rd_ctrl( 17 input wire ui_clk ,//系统时钟 18 input wire rst ,//系统复位 19 input wire rd_start ,//读开始 20 21 output wire rd_req ,//读请求 22 input wire rd_ack ,//读响应 23 output wire rd_done ,//读完成 24 output wire rd_busy ,//读忙碌 25 26 output wire [2:0] app_cmd ,//读ddr命令 27 output wire app_en ,//读ddr命令使能 28 output wire [28:0] app_addr ,//读ddr地址 29 input wire app_rdy ,//ddr命令通道空闲 30 31 input wire app_rd_data_vld ,//ddr读出数据有效 32 input wire [255:0] app_rd_data ,//从ddr中读出的数据 33 output wire rd_ddr_data_vld ,//用户读出数据有效 34 output wire [255:0] rd_ddr_data //用户读出的数据 35 ); 36 37 //============================================= 38 //parameter define 39 //============================================= 40 parameter IDLE = 3'b001; 41 parameter RD_REQ = 3'b010; 42 parameter READ = 3'b100; 43 44 parameter TOTAL_PIXEL = 1024 * 768 - 8; 45 parameter BURST_LEN = 64 - 1; 46 47 //============================================= 48 //internal siganl 49 //============================================= 50 reg [2:0] state ;//状态寄存器 51 52 reg [9:0] cnt_data ;//计数当读出的数据 53 wire add_cnt_data ; 54 wire end_cnt_data ; 55 56 reg [9:0] cnt_cmd ;//计数当前已经给出的命令 57 wire add_cnt_cmd ; 58 wire end_cnt_cmd ; 59 60 reg app_en_r ;//命令有效信号 61 reg [28:0] app_addr_r ;//写入的地址 62 63 reg rd_done_r ;//一次读完成 64 reg rd_req_r ;//读请求 65 reg rd_ddr_data_vld_r ;//读出数据有效 66 reg [255:0] rd_ddr_data_r ;//读出的数据 67 68 assign app_cmd = 3'b001; //读命令 69 assign app_en = app_en_r ; 70 assign app_addr= app_addr_r; 71 assign rd_done = rd_done_r; 72 assign rd_busy = state==READ; 73 assign rd_req = rd_req_r; 74 assign rd_ddr_data = rd_ddr_data_r; 75 assign rd_ddr_data_vld = rd_ddr_data_vld_r; 76 77 78 //--------------------state machine describe-------------------- 79 always @(posedge ui_clk)begin 80 if(rst == 1'b1)begin 81 state <= IDLE; 82 end 83 else begin 84 case(state) 85 IDLE:begin 86 if(rd_start==1'b1) 87 state <= RD_REQ; 88 else 89 state <= IDLE; 90 end 91 92 RD_REQ:begin 93 if(rd_ack) 94 state <= READ; 95 else 96 state <= RD_REQ; 97 end 98 99 READ:begin 100 if(end_cnt_cmd) 101 state <= IDLE; 102 else 103 state <= READ; 104 end 105 106 default:begin 107 state <= IDLE; 108 end 109 endcase 110 end 111 end 112 113 114 //--------------------cnt_data-------------------- 115 always @(posedge ui_clk)begin 116 if(rst==1'b1)begin 117 cnt_data <= 0; 118 end 119 else if(add_cnt_data)begin 120 if(end_cnt_data) 121 cnt_data <= 0; 122 else 123 cnt_data <= cnt_data + 1'b1; 124 end 125 end 126 127 assign add_cnt_data = app_rd_data_vld; 128 assign end_cnt_data = add_cnt_data && cnt_data== BURST_LEN; 129 130 //--------------------app_en_r-------------------- 131 always @(posedge ui_clk)begin 132 if(rst == 1'b1)begin 133 app_en_r <= 1'b0; 134 end 135 else if(end_cnt_cmd)begin 136 app_en_r <= 1'b0; 137 end 138 else if(state==RD_REQ && rd_ack==1'b1)begin 139 app_en_r <= 1'b1; 140 end 141 end 142 143 //--------------------cnt_cmd-------------------- 144 always @(posedge ui_clk)begin 145 if(rst==1'b1)begin 146 cnt_cmd <= 0; 147 end 148 else if(add_cnt_cmd)begin 149 if(end_cnt_cmd) 150 cnt_cmd <= 0; 151 else 152 cnt_cmd <= cnt_cmd + 1'b1; 153 end 154 end 155 156 assign add_cnt_cmd = app_rdy & app_en_r; 157 assign end_cnt_cmd = add_cnt_cmd && cnt_cmd== BURST_LEN; 158 159 //--------------------app_addr_r-------------------- 160 always @(posedge ui_clk)begin 161 if(rst == 1'b1)begin 162 app_addr_r <= 'd0; 163 end 164 else if(app_addr_r == TOTAL_PIXEL && app_en_r==1'b1 && app_rdy==1'b1)begin 165 app_addr_r <= 'd0; 166 end 167 else if(app_en_r==1'b1 && app_rdy==1'b1)begin 168 app_addr_r <= app_addr_r + 'd8; 169 end 170 end 171 172 //--------------------rd_done_r-------------------- 173 always @(posedge ui_clk)begin 174 if(rst == 1'b1)begin 175 rd_done_r <= 1'b0; 176 end 177 else if(end_cnt_data==1'b1)begin 178 rd_done_r <= 1'b1; 179 end 180 else begin 181 rd_done_r <= 1'b0; 182 end 183 end 184 185 //--------------------rd_req_r-------------------- 186 always @(posedge ui_clk)begin 187 if(rst == 1'b1)begin 188 rd_req_r <= 1'b0; 189 end 190 else if(rd_ack==1'b1)begin 191 rd_req_r <= 1'b0; 192 end 193 else if(state==IDLE && rd_start==1'b1)begin 194 rd_req_r <= 1'b1; 195 end 196 end 197 198 //--------------------rd_ddr_data_r, rd_ddr_data_vld_r-------------------- 199 always @(posedge ui_clk)begin 200 if(rst == 1'b1)begin 201 rd_ddr_data_r <= 'd0; 202 rd_ddr_data_vld_r <= 1'b0; 203 end 204 else begin 205 rd_ddr_data_r <= app_rd_data; 206 rd_ddr_data_vld_r <= app_rd_data_vld; 207 end 208 end 209 endmodule
4) 读写仲裁模块
本模块的目的是为了来避免读写冲突的,在ddr进行写操作的同时,也有可能有读操作需要处理,这时候就会发生读写冲突,为了避免读写操作同时发生创建一个仲裁模块,模块的结构和信号列表如下:
端口名称 |
I/O |
位宽 |
备注 |
wr_req |
I |
1 |
写数据请求,写控制模块给出的写请求 |
rd_req |
I |
1 |
读数据请求,读控制模块给出的读请求 |
ui_clk |
I |
1 |
系统时钟 |
rst |
I |
1 |
系统同步复位 |
wr_ack |
O |
1 |
写响应,用来响应本次写操作 |
wr_done |
I |
1 |
一次写操作完成 |
rd_ack |
O |
1 |
读响应,用来响应读操作 |
rd_done |
I |
1 |
一次读操作完成。 |
本模块的功能设计可以参考时序图,这里简单介绍以下本模块的工作方式,本模块的状态跳转入下图所示,在仲裁状态ARBIT下若接收到读请求,则进入读状态,若接收到写请求,则进入写状态,若读写请求同时出现则优先响应写请求进入写状态,当在读写状态中接收到读写结束信号wr_done或者rd_done时,状态将回到仲裁状态。
本模块的工作的时序设计如下:
本模块实现的功能比较简单,通过时序图能够很直观地就看出其功能,在这里不再赘述。至此我们完成了这些基础模块地创建,有了这些时序设计波形图,去设计代码就是十分简单地事情了。
/*============================================================================= # # Author: weichaochen - 1530604142@qq.com # # QQ : 1530604142 # # Last modified: 2019-12-29 19:35 # # Filename: ddr_arbit.v # # Description: # =============================================================================*/ `timescale 1ns / 1ps module ddr_arbit( input wire ui_clk ,//系统时钟 input wire rst ,//系统复位 input wire wr_req ,//写请求 output wire wr_ack ,//写响应 input wire wr_done ,//写完成 input wire rd_req ,//读请求 output wire rd_ack ,//读响应 input wire rd_done //读完成 ); //================================================== //parameter define //================================================== parameter IDLE = 4'b0001; parameter ARBIT = 4'b0010; parameter WRITE = 4'b0100; parameter READ = 4'b1000; //================================================== //internal siganls //================================================== reg wr_ack_r ; reg rd_ack_r ; reg [3:0] state ; assign wr_ack = wr_ack_r ; assign rd_ack = rd_ack_r ; //--------------------state machine describe-------------------- always @(posedge ui_clk)begin if(rst == 1'b1)begin state <= IDLE; end else begin case(state) IDLE:begin state <= ARBIT; end ARBIT:begin if(wr_req==1'b1)//写的优先级高于读 state <= WRITE; else if(wr_req==1'b0 && rd_req==1'b1) state <= READ; end WRITE:begin if(wr_done) state <= ARBIT; else state <= WRITE; end READ:begin if(rd_done) state <= ARBIT; else state <= READ; end default:begin state <= IDLE; end endcase end end //--------------------wr_ack_r-------------------- always @(posedge ui_clk)begin if(rst == 1'b1)begin wr_ack_r <= 1'b0; end else if(state==ARBIT && wr_req==1'b1)begin wr_ack_r <= 1'b1; end else begin wr_ack_r <= 1'b0; end end //--------------------rd_ack_r-------------------- always @(posedge ui_clk)begin if(rst == 1'b1)begin rd_ack_r <= 1'b0; end else if(state==ARBIT && wr_req==1'b0 && rd_req==1'b1)begin rd_ack_r <= 1'b1; end else begin rd_ack_r <= 1'b0; end end endmodule
在有了这些模块后,接下来我们要进行对这些模块的功能测试,我们将对ddr3进行循环读写测试来验证其功能。接下来,我们就编写一个测试模块。
该模块负责对DDR进行循环读写,每次读写64个256bit数据,通过比较写入和读出的数据是否相同来判断ddr控制器是否正常工作.
该模块的状态跳转如下图所示,在arbit状态下判断当前是该进行写还是读,应该注意本次实验的读写是交替进行的.
1 /*============================================================================= 2 # 3 # Author: weichaochen - 1530604142@qq.com 4 # 5 # QQ : 1530604142 6 # 7 # Last modified: 2019-12-29 19:41 8 # 9 # Filename: gen_test_data.v 10 # 11 # Description: 12 # 13 =============================================================================*/ 14 15 `timescale 1ns / 1ps 16 module gen_test_data( 17 input wire ui_clk ,//系统时钟 18 input wire rst ,//系统复位 19 input wire ddr_busy ,//ddr控制器当前处于忙碌状态 20 21 output wire wr_start ,//写开始信号 22 input wire data_req ,//数据请求信号 23 output wire [255:0] wr_ddr_data ,//将要写入ddr的数据 24 input wire wr_done ,//一次写操作完成信号 25 26 output wire rd_start ,//读开始信号 27 input wire rd_data_vld ,//读出数据有效信号 28 input wire [255:0] rd_ddr_data ,//读出的有效数据 29 input wire rd_done ,//一次读完成信号 30 31 output wire error //读写错误信号 32 ); 33 34 //================================================== 35 //parameter define 36 //================================================== 37 parameter IDLE = 4'b0001; 38 parameter ARBIT = 4'b0010; 39 parameter WRITE = 4'b0100; 40 parameter READ = 4'b1000; 41 42 parameter CNT_MAX = 64 - 1; 43 44 //================================================== 45 //internal siganls 46 //================================================== 47 reg [3:0] state ;//状态寄存器 48 reg [7:0] cnt_data ;//数据计数 49 reg wr_start_r ;//写开始信号 50 reg rd_start_r ;//读开始信号 51 reg error_r ;//错误指示信号 52 reg wr_rd_flag ;//读写指示信号 53 54 assign wr_ddr_data = (wr_rd_flag==1'b0)?{32{cnt_data}}:256'd0; 55 assign wr_start = wr_start_r; 56 assign rd_start = rd_start_r; 57 assign error = error_r; 58 //--------------------state machine describe-------------------- 59 always @(posedge ui_clk)begin 60 if(rst == 1'b1)begin 61 state <= IDLE; 62 end 63 else begin 64 case(state) 65 IDLE:begin 66 state <= ARBIT; 67 end 68 69 ARBIT:begin 70 if(wr_start_r)//当前需要进行写操作 71 state <= WRITE; 72 else if(rd_start_r)//当前需要进行读操作 73 state <= READ; 74 end 75 76 WRITE:begin 77 if(wr_done) 78 state <= ARBIT; 79 else 80 state <= WRITE; 81 end 82 83 READ:begin 84 if(rd_done) 85 state <= ARBIT; 86 else 87 state <= READ; 88 end 89 90 default:begin 91 state <= IDLE; 92 end 93 endcase 94 end 95 end 96 97 //--------------------wr_rd_flag-------------------- 98 always @(posedge ui_clk)begin 99 if(rst == 1'b1)begin 100 wr_rd_flag <= 1'b0; 101 end 102 else if(wr_done==1'b1)begin 103 wr_rd_flag <= 1'b1; 104 end 105 else if(rd_done==1'b1)begin 106 wr_rd_flag <= 1'b0; 107 end 108 end 109 110 //--------------------wr_start_r,rd_start_r-------------------- 111 always @(posedge ui_clk)begin 112 if(rst == 1'b1)begin 113 wr_start_r <= 1'b0; 114 rd_start_r <= 1'b0; 115 end 116 else if(state==ARBIT && ddr_busy==1'b0 && wr_rd_flag==1'b0)begin 117 wr_start_r <= 1'b1; 118 end 119 else if(state==ARBIT && ddr_busy==1'b0 && wr_rd_flag==1'b1)begin 120 rd_start_r <= 1'b1; 121 end 122 else begin 123 rd_start_r <= 1'b0; 124 wr_start_r <= 1'b0; 125 end 126 end 127 128 //--------------------cnt_data-------------------- 129 always @(posedge ui_clk)begin 130 if(rst == 1'b1)begin 131 cnt_data <= 'd0; 132 end 133 else if(data_req==1'b1)begin 134 if(cnt_data==CNT_MAX) 135 cnt_data <= 'd0; 136 else 137 cnt_data <= cnt_data + 1'b1; 138 end 139 else if(rd_data_vld==1'b1)begin 140 if(cnt_data==CNT_MAX) 141 cnt_data <= 'd0; 142 else 143 cnt_data <= cnt_data + 1'b1; 144 end 145 end 146 147 //--------------------error-------------------- 148 always @(posedge ui_clk)begin 149 if(rst == 1'b1)begin 150 error_r <= 1'b0; 151 end 152 else if(rd_data_vld==1'b1 && (rd_ddr_data !={32{cnt_data}}))begin 153 error_r <= 1'b1; 154 end 155 end 156 157 158 endmodule
在接下来可以对对将整个工程进行仿真,通过仿真的结果来判断结构是否正确.
在产生循环读写的模块中,我们可以看到error信号一直保持为低,并且用户的确向DDR中写入了数据,并且也从DDR中读出了数据,说明我们的设计的控制器已经正常工作了。
标签:wire,IP,app,MIG,rd,ddr,wr,DDR3,data
来源: https://www.cnblogs.com/weicc/p/12051840.html
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。