NIM游戏:妙解
作者:互联网
巴什博奕,n%(m+1)!=0时,先手总是会赢的
来自 <https://leetcode-cn.com/problems/nim-game/comments/>
-
思路:此题代码很简单,但是思想却不好理解,我们每次拿石头,一共有两种情况,A:石头总数为4的倍数,B:石头总数不为4的倍数,为什么我们会关注4的倍数呢。我们可以采取数学归纳法证明一下(证明对于4的倍数而言不管怎么拿都会得到还是4的倍数从8开始证明),就是因为对于4而言,谁面对4谁就输了,因为不管你拿1,2,3个剩下的都会被一次拿完,而对于2* 4=8个,面对8的时候不管拿x(1,2,3)个另一个人都可以4-x个使得剩下的为4个也就是输了(所以n=8时成立)。我们推广到4k数而言,当第一个人拿x(1,2,3),第二个人就拿4-x所有得到了4k-x+(4-x) = 4*(k-1)也为4的倍数(所以当数为4k而言成立);所以数学归纳法成立,所以对于任意4的倍数而言每次减小4最后都会得到4就代表着遇到4的倍数的人就输了,而对于情况B而言为什么就赢了呢?,因为对于一个不为4的倍数的值4* n>x>4* (n-1),x处于两个4的倍数之间他们之差为4,由于x不为4的倍数,所以,x距离最近的4的倍数值最大为3,所以只要面对到不是4的倍数的值我们一定可以取走(1,2,3)中的某个值导致剩下的值为4的倍数,而面对4倍数的人一定输(已经证明)。所以我们只需要关注4的倍数的值即可。
class Solution {
public:
bool canWinNim(int n) {
return n%4!=0;// 速度更快的是位运算 (n&3)!=0;
}
};
作者:vailing
链接:https://leetcode-cn.com/problems/nim-game/solution/shu-xue-gui-lei-fa-zheng-ming-by-vailing/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
标签:对于,游戏,而言,NIM,妙解,所以,game,倍数,4k 来源: https://www.cnblogs.com/xukaiae86/p/12047322.html