regression PM2.5 predict
作者:互联网
原文链接
https://github.com/ntumlta2019/hw1#import-package
代码:
# import package import sys import numpy as np import pandas as pd import csv # read in training set raw_data = np.genfromtxt(sys.argv[1], delimiter=',') ## train.csv data = raw_data[1:,3:] where_are_NaNs = np.isnan(data) data[where_are_NaNs] = 0 month_to_data = {} ## Dictionary (key:month , value:data) for month in range(12): sample = np.empty(shape = (18 , 480)) for day in range(20): for hour in range(24): sample[:, day * 24 + hour] = data[18 * (month * 20 + day): 18 * (month * 20 + day + 1), hour] month_to_data[month] = sample # preprocess x = np.empty(shape = (12 * 471 , 18 * 9),dtype = float) y = np.empty(shape = (12 * 471 , 1),dtype = float) for month in range(12): for day in range(20): for hour in range(24): if day == 19 and hour > 14: continue x[month * 471 + day * 24 + hour,:] = month_to_data[month][:,day * 24 + hour : day * 24 + hour + 9].reshape(1,-1) y[month * 471 + day * 24 + hour,0] = month_to_data[month][9 ,day * 24 + hour + 9] # normalization mean = np.mean(x, axis = 0) std = np.std(x, axis = 0) for i in range(x.shape[0]): for j in range(x.shape[1]): if not std[j] == 0 : x[i][j] = (x[i][j]- mean[j]) / std[j] # training dim = x.shape[1] + 1 w = np.zeros(shape=(dim, 1)) x = np.concatenate((np.ones((x.shape[0], 1)), x), axis=1).astype(float) learning_rate = np.array([[200]] * dim) adagrad_sum = np.zeros(shape=(dim, 1)) for T in range(10000): if (T % 500 == 0): print("T=", T) print("Loss:", np.power(np.sum(np.power(x.dot(w) - y, 2)) / x.shape[0], 0.5)) gradient = (-2) * np.transpose(x).dot(y - x.dot(w)) adagrad_sum += gradient ** 2 w = w - learning_rate * gradient / (np.sqrt(adagrad_sum) + 0.0005) np.save('weight.npy', w) ## save weight # reading in testing set w = np.load('weight.npy') ## load weight test_raw_data = np.genfromtxt(sys.argv[2], delimiter=',') ## test.csv test_data = test_raw_data[:, 2: ] where_are_NaNs = np.isnan(test_data) test_data[where_are_NaNs] = 0 # predict test_x = np.empty(shape = (240, 18 * 9),dtype = float) for i in range(240): test_x[i,:] = test_data[18 * i : 18 * (i+1),:].reshape(1,-1) for i in range(test_x.shape[0]): ##Normalization for j in range(test_x.shape[1]): if not std[j] == 0 : test_x[i][j] = (test_x[i][j]- mean[j]) / std[j] test_x = np.concatenate((np.ones(shape = (test_x.shape[0],1)),test_x),axis = 1).astype(float) answer = test_x.dot(w) # write file f = open(sys.argv[3],"w") w = csv.writer(f) title = ['id','value'] w.writerow(title) for i in range(240): content = ['id_'+str(i),answer[i][0]] w.writerow(content)
标签:predict,range,month,test,shape,PM2.5,np,data,regression 来源: https://www.cnblogs.com/Chaosliang/p/11919572.html