GLIBC中的库函数fflush究竟做了什么?
作者:互联网
目录
目录 1
1. 库函数fflush原型 1
2. FILE结构体 1
3. fflush函数实现 2
4. fclose函数实现 4
附1:强弱函数名 5
附2:属性__visibility__ 6
1. 库函数fflush原型
先瞧瞧fflush的原型:
#include <stdio.h> int fflush(FILE *stream); |
可看到fflush操作的是FILE,这里的FILE又长什么样?如果参数传入NULL,则对所有已打开的有效。
2. FILE结构体
直接查看源码,或者在GDB上执行ptype,即可看到FILE的庐山真面目如下:
// The value returned by fgetc and similar functions to indicate the end of the file. // #define EOF (-1) type = struct _IO_FILE { int _flags; char *_IO_read_ptr; char *_IO_read_end; char *_IO_read_base; char *_IO_write_base; // 写缓冲区起始地址 (Start of put area) char *_IO_write_ptr; // 写的起始地址 (Current put pointer) char *_IO_write_end; // 写缓冲区的末端 char *_IO_buf_base; char *_IO_buf_end; char *_IO_save_base; char *_IO_backup_base; char *_IO_save_end; _IO_marker *_markers; _IO_FILE *_chain; int _fileno; // 文件描述符 int _flags2; __off_t _old_offset; unsigned short _cur_column; signed char _vtable_offset; char _shortbuf[1]; _IO_lock_t *_lock; __off64_t _offset; void *__pad1; void *__pad2; void *__pad3; void *__pad4; size_t __pad5; int _mode; // 文件打开模式,参见系统调用open的mode参数取值 char _unused2[20]; } FILE; |
_IO_write_ptr和_IO_write_base之间为已写入缓冲区的数据,_IO_write_end和_IO_write_base为写缓冲区的大小,_IO_write_end和_IO_write_ptr之间为写缓冲区可用区域。
3. fflush函数实现
LIBC库函数fflush主要做的是借助系统调用write将_IO_write_ptr和_IO_write_base间的数据写入内核。可借助下列小段代码看出真相:
$ cat ggg.cpp #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main() { FILE* fp = fopen("/tmp/ggg.txt", "w+"); if (fp == NULL) { perror("fopen"); exit(1); }
fputs("hello", fp); // 这一步并不会调用write fflush(fp); // 间接调用write fclose(fp); return 0; } |
借助GDB即可看到fflush时的调用栈:
(gdb) bt #0 0x00007ffff72e0840 in write () from /lib64/libc.so.6 #1 0x00007ffff726cfb3 in _IO_new_file_write () from /lib64/libc.so.6 #2 0x00007ffff726e41c in __GI__IO_do_write () from /lib64/libc.so.6 #3 0x00007ffff726c810 in __GI__IO_file_sync () from /lib64/libc.so.6 #4 0x00007ffff72620a2 in fflush () from /lib64/libc.so.6 #5 0x00000000004007bd in main () at ggg.cpp:12 |
函数__GI__IO_file_sync源码:
int _IO_new_file_sync (FILE *fp) { ssize_t delta; int retval = 0;
/* char* ptr = cur_ptr(); */ if (fp->_IO_write_ptr > fp->_IO_write_base) if (_IO_do_flush(fp)) return EOF; delta = fp->_IO_read_ptr - fp->_IO_read_end; if (delta != 0) { off64_t new_pos = _IO_SYSSEEK (fp, delta, 1); if (new_pos != (off64_t) EOF) fp->_IO_read_end = fp->_IO_read_ptr; else if (errno == ESPIPE) ; /* Ignore error from unseekable devices. */ else retval = EOF; } if (retval != EOF) fp->_offset = _IO_pos_BAD; /* FIXME: Cleanup - can this be shared? */ /* setg(base(), ptr, ptr); */ return retval; } libc_hidden_ver (_IO_new_file_sync, _IO_file_sync)
// 下面的“_f”类型为FILE #define _IO_do_flush(_f) \ ((_f)->_mode <= 0 \ ? _IO_do_write(_f, (_f)->_IO_write_base, (_f)->_IO_write_ptr-(_f)->_IO_write_base) \ : _IO_wdo_write(_f, (_f)->_wide_data->_IO_write_base, \ ((_f)->_wide_data->_IO_write_ptr - (_f)->_wide_data->_IO_write_base)))
extern int _IO_do_write (FILE *, const char *, size_t); libc_hidden_proto (_IO_do_write) extern int _IO_wdo_write (FILE *, const wchar_t *, size_t); libc_hidden_proto (_IO_wdo_write) |
函数_IO_do_write源代码:
int _IO_new_do_write (FILE *fp, const char *data, size_t to_do) { // new_do_write实际调用write return (to_do == 0 || (size_t) new_do_write (fp, data, to_do) == to_do) ? 0 : EOF; } libc_hidden_ver (_IO_new_do_write, _IO_do_write) |
4. fclose函数实现
如果省掉fflush,代码变成如下:
$ cat ggg.cpp #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main() { FILE* fp = fopen("/tmp/ggg.txt", "w+"); if (fp == NULL) { perror("fopen"); exit(1); }
fputs("hello", fp); //fflush(fp); fclose(fp); return 0; } |
可看到write发生在fclose时:
(gdb) bt #0 0x00007ffff72e0840 in write () from /lib64/libc.so.6 #1 0x00007ffff726cfb3 in _IO_new_file_write () from /lib64/libc.so.6 #2 0x00007ffff726e41c in __GI__IO_do_write () from /lib64/libc.so.6 #3 0x00007ffff726dd10 in __GI__IO_file_close_it () from /lib64/libc.so.6 #4 0x00007ffff7261c40 in fclose@@GLIBC_2.2.5 () from /lib64/libc.so.6 #5 0x000000000040076d in main () at ggg.cpp:13 |
但如果在flcose之前已调用了fflush,则fclose时不会再调用write。
附1:强弱函数名
调用一个函数时,如果存在强符号,则调用强函数;否则如果存在弱符号,则调用弱函数,可简单将“弱函数”看成为函数指针,如果弱函数对应的函数并不存在,仍然可以编译链接成功,这个时候类似于野指针或空指针,运行时会段错误。
1) 定义弱函数名weak_alias
是一个宏,用来定义弱别名,GLIBC中大量使用,如:
weak_alias (_IO_fflush, fflush) // fflush为别名 |
2) 定义强弱函数名strong_alias
是一个宏,用来定义强别名,GLIBC中大量使用,如:
strong_alias (_IO_fflush, __fflush_unlocked) |
3) 示例(f为弱函数名,_f为强函数名):
$ cat aaa.c #include <stdio.h> static void f() __attribute__((weakref, alias("_f"))); int main() { f(); return 0; }
$ cat bbb.c #include <stdio.h> void _f() { printf("hello\n"); } |
如果如下方式编译,则运行时段错误:
gcc -g -o aaa aaa.c |
而如下方式,则实际执行文件bbb.c中的函数“_f”:
gcc -g -o aaa aaa.c bbb.c |
4) GLIBC中weak_alias的定义(定义在文件libc-symbols.h中)
/* Define ALIASNAME as a weak alias for NAME. If weak aliases are not available, this defines a strong alias. */ # define weak_alias(name, aliasname) _weak_alias (name, aliasname)
# define _weak_alias(name, aliasname) \ extern __typeof (name) aliasname __attribute__ ((weak, alias (#name))) \ __attribute_copy__ (name); |
也可用weak_hidden_alias定义隐藏别名:
/* Same as WEAK_ALIAS, but mark symbol as hidden. */ # define weak_hidden_alias(name, aliasname) _weak_hidden_alias (name, aliasname)
# define _weak_hidden_alias(name, aliasname) \ extern __typeof (name) aliasname \ __attribute__ ((weak, alias (#name), __visibility__ ("hidden"))) __attribute_copy__ (name); |
附2:属性__visibility__
先看一小段代码:
$ cat eee.cpp #include <stdio.h> __attribute ((visibility("default"))) void ff1() { printf("ff1\n"); } __attribute ((visibility("hidden"))) void ff2() { printf("ff2\n"); } |
$ g++ -g -o libeee.so -fPIC -shared eee.cpp $ nm libeee.so 0000000000201030 B __bss_start 0000000000201030 b completed.6337 w __cxa_finalize@@GLIBC_2.2.5 0000000000000600 t deregister_tm_clones 0000000000000670 t __do_global_dtors_aux 0000000000200dd0 t __do_global_dtors_aux_fini_array_entry 0000000000200de0 d __dso_handle 0000000000200de8 d _DYNAMIC 0000000000201030 D _edata 0000000000201038 B _end 000000000000070c T _fini 00000000000006b0 t frame_dummy 0000000000200dc8 t __frame_dummy_init_array_entry 00000000000007c8 r __FRAME_END__ 0000000000201000 d _GLOBAL_OFFSET_TABLE_ w __gmon_start__ 00000000000005a0 T _init w _ITM_deregisterTMCloneTable w _ITM_registerTMCloneTable 0000000000200dd8 d __JCR_END__ 0000000000200dd8 d __JCR_LIST__ w _Jv_RegisterClasses U puts@@GLIBC_2.2.5 0000000000000630 t register_tm_clones 0000000000201030 d __TMC_END__ 00000000000006e8 T _Z3ff1v 00000000000006fa t _Z3ff2v |
上面中的“T”和“t”均表示该符号文本(代码)段在,但visibility为“default”的对应大写“T”,而visibility为“hidden”的对应小写“t”,为小写“t”的符号对外并不可见。
通过下段代码,可以看到引用大写“T”的符号,可得到预期的结果:
$ cat fff.cpp extern void ff1(); int main() { ff1(); return 0; }
$ g++ -g -o fff fff.cpp libeee.so -Wl,-rpath=. $ ./fff ff1 |
而引用小写“t”的符号,在链接时报“符号未定义”错误:
$ cat fff2.cpp extern void ff2(); int main() { ff2(); return 0; }
$ g++ -g -o fff2 fff2.cpp libeee.so -Wl,-rpath=. /tmp/ccwoSyAu.o:在函数‘main’中: /tmp/fff.cpp:3:对‘ff2()’未定义的引用 collect2: 错误:ld 返回 1 |
标签:__,fp,do,GLIBC,write,IO,fflush,库函数 来源: https://www.cnblogs.com/aquester/p/11856308.html