其他分享
首页 > 其他分享> > 【CF10D】 LCIS

【CF10D】 LCIS

作者:互联网

题目链接

最长公共上升子序列

\(f[i][j]\)表示\(A\)的前\(i\)个数,匹配\(B\)的第\(j\)个数,且\(B[j]\)必选时的最长公共上升子序列长度

转移:

if(A[i]==B[j]) dp[i][j]=max(dp[i-1][k])+1; k=[1,2,...,j-1],B[k]<B[j]=A[i]
else dp[i][j]=dp[i-1][j];

记录一下\(dp[i-1][j]\)最大的\(B[k]<B[j]\),优化到\(O(n^2)\)

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int MAXN=510;

inline int read(){
    int x=0; char c=getchar();
    while(c<'0') c=getchar();
    while(c>='0') x=x*10+c-'0',c=getchar();
    return x;
}

int n,m,A[MAXN],B[MAXN];
int dp[MAXN][MAXN],g[MAXN][MAXN],pre[MAXN][MAXN];

inline void dfs(int i,int x){
    if(!x) return;
    dfs(i-1,pre[i][x]);
    if(pre[i][x]!=x)
        printf("%d ",B[x]);
}

int main()
{
    n=read();
    for(int i=1;i<=n;++i)
        A[i]=read();
    m=read();
    for(int i=1;i<=m;++i)
        B[i]=read();
    for(int i=1;i<=n;++i){
        int k=0;
        for(int j=1;j<=m;++j){
            dp[i][j]=dp[i-1][j];
            pre[i][j]=j;
            if(A[i]==B[j])
                dp[i][j]=dp[i-1][k]+1,pre[i][j]=k;
            if(B[j]<A[i]&&dp[i-1][j]>dp[i-1][k]) k=j;
        }
    }
    int Ans=0,k=0;
    for(int i=1;i<=m;++i)
        if(dp[n][i]>Ans) Ans=dp[n][i],k=i;
    printf("%d\n",Ans);
    dfs(n,k);
    return 0;
}

标签:pre,LCIS,int,CF10D,dfs,MAXN,include,dp
来源: https://www.cnblogs.com/yjkhhh/p/11813723.html