其他分享
首页 > 其他分享> > 高可用架构之高可用的应用和服务

高可用架构之高可用的应用和服务

作者:互联网

高可用的网站架构需要网站应用每个层面的支持,本文着重介绍应用层和服务层的高可用的解决方案。

 

1、高可用的应用

应用层主要处理网站应用的业务逻辑,因此有时也被称作业务逻辑层,应用的一个显著特点是应用的无状态性。

所谓无状态的应用是指应用服务器不保存业务的上下文信息,而仅根据每次请求提交的数据进行相应的业务逻辑处理,多个服务实例(服务器)之间完全对等,请求提交到任意服务器,处理结果都是完全一样的。

 

1.1 通过负载均衡进行无状态服务的失效转移

不保存状态的应用给高可用的架构设计带来了巨大便利,既然服务器不保存请求的状态,那么所有的服务器完全对等,当任意一台或多台服务器宕机,请求提交给集群中的其他任意一台可用机器处理,这样对终端用户而言,请求总是能够成功的,整个系统依然可用。对于应用服务器集群,实现这种服务器可用状态实时检测、自动转移失败任务的机制就是负载均衡。

负载均衡,顾名思义,主要使用在业务量和数据量较高的情况下,当单台服务器不足以承担所有的负载压力时,通过负载均衡手段,将流量和数据分摊到一个集群组成的多台服务器上,以提高整体的负载处理能力。目前,不管开源免费的负载均衡软件还是昂贵的负载均衡硬件,都提供失效转移功能。在网站应用中,当集群中的服务器是无状态对等时,负载均衡可以起到事实上高可用的作用。如下图所示:

当 Web 服务器集群中的服务器都可用时,负载均衡服务器会把用户发送的访问请求分发到任意一台服务器上进行处理,而当服务器 10.0.0.1 宕机时,负载均衡服务器通过心跳检测机制发现该服务器失去响应,就会把它从服务器列表中删除,而将请求发送到其他服务器上,这些服务器是完全一样的,请求在任何一台服务器中处理都不会影响最终的结果。

 

由于负载均衡在应用层实际上起到了系统高可用的作用,因此即使某个应用访问量非常少,只用一台服务器提供服务就绰绰有余,但如果需要保证该服务高可用,也必须至少部署两台服务器,使用负载均衡技术构建一个小型的集群。

 

 

 

1.2 应用服务器集群的 Session 管理

 

应用服务器的高可用架构设计主要基于服务无状态这一特性,但是事实上,业务总是有状态的。

 

 

 

在交易类的电子商务网站,需要有购物车记录用户的购买信息,用户每次购买请求都是向购物车中增加商品;

 

 

 

在社交类的网站中,需要记录用户的当前登录状态,最新发布的消息及好友状态等,用户每次算新页面都需要更新这些信息。

 

Web 应用中将这些多次请求修改使用的上下文对象称作会话(Session),单机情况下,Session 可由部署在服务器上的 Web 容器(如 JBoss)管理。在使用负载均衡的集群环境中,由于负载均衡服务器可能会将请求分发到集群任何一台应用服务器上,所以保证每次请求依然能够获得正确的 Session 比单机时要复杂很多。

 

集群环境下,Session 管理主要有以下几种手段。

 

 

 

1.2.1 Session 复制

 

Session 复制是早期企业应用系统使用较多的一种服务器集群 Session 管理机制。应用服务器开启 Web 容器的 Session 复制功能,在集群中的几台服务器之间同步 Session 对象,使得每台服务器上都保存所有用户的 Session 信息,这样任何一台机器宕机都不会导致 Session 数据的丢失,而服务器使用 Session 时,也只需要在本机获取即可。如下图所示:

这种方案虽然简单,从本机读取 Session 信息也很快速,但只能使用在集群规模比较小的情况下。当集群规模较大时,集群服务器间需要大量的通信进行 Session 复制,占用服务器和网络的大量资源,系统不堪重负。而且由于所有用户的 Session 信息在每台服务器上都有备份,在大量用户访问的情况下,甚至会出现服务器内存不够 Session 使用的情况。

 

而大型网站的核心应用集群就是数千台服务器,同时在线用户可达千万,因此并不适用这种方案。

 

 

 

1.2.2 Session 绑定

 

Session 绑定可以利用负载均衡的源地址 Hash 算法实现,负载均衡服务器总是将来源于同一 IP 的请求分发到同一台服务器上(也可以根据 Cookie 信息将同一个用户的请求总是分发到同一台服务器上,当然这时负载均衡服务器必须工作在 HTTP 协议层上。)这样在整个会话期间,用户所有的请求都在同一台服务器上处理,即 Session 绑定在某台特定服务器上,保证 Session 总能在这台服务器上获取。这种方法也被称作会话粘滞。如下图所示:

 

但是 Session 绑定的方案显然不符合我们对于系统高可用的需求,因为一旦某台服务器宕机,那么该机器上的 Session 也就不复存在了,用户请求切换到其他机器后因为没有 Session 而无法完成业务处理。因此虽然大部分负载均衡服务器都提供源地址负载均衡算法,但很少有网站利用这个算法进行 Session 管理。

 

1.2.3 利用 Cookie 记录 Session

早期的企业应用系统使用 C/S(客户端/服务器)架构,一种管理 Session 的方式是将 Session 记录在客户端,每次请求服务器的时候,将 Session 放在请求中发送给服务器,服务器处理完请求后再将修改过的 Session 响应给客户端。

网站没有客户端,但是可以利用浏览器支持的 Cookie 记录 Session,如下图所示:

 

 

 

利用 Cookie 记录 Session 也有一些缺点,比如:

 

受 Cookie 大小限制,能记录的信息有限;

每次请求响应都需要传输 Cookie ,影响性能;

如果用户关闭 Cookie ,访问就会不正常。

但是由于 Cookie  的简单易用,可用性高,支持应用服务器的线性伸缩,而大部分应用需要记录的 Session 信息又比较小。因此事实上,许多网站都或多或少地使用 Cookie 记录 Session。

 

1.2.4 Session 服务器

那么有没有可用性高、伸缩性好、性能也不错,对信息大小又没有限制的服务器集群 Session 管理方案呢?

答案就是 Session 服务器。利用独立部署的 Session 服务器(集群)统一管理 Session ,应用服务器每次读写 Session 时,都访问 Session 服务器。如下图所示:

 

 

 

 

这种解决方案事实上是将应用服务器的状态分离,分为无状态的应用服务器和有状态的 Session 服务器,然后针对这两种服务器的不同特性分别设计其架构。

对于有状态的 Session 服务器,一种比较简单的方法是利用分布式缓存、数据库等,在这些产品的基础上进行包装,使其符合 Session 的存储和访问要求。如果业务场景对 Session 管理有比较高的要求,比如利用 Session 服务集成单点登录(SSO)、用户服务等功能,则需要开发专门的 Session 服务管理平台。

 

2、高可用的服务

可服用的服务模块为业务产品提供基础公共服务,大型网站中这些服务通常都独立分布式部署,被具体应用远程调用。可复用的服务和应用一样,也是无状态的服务,因此可以使用类似负载均衡的失效转移策略实现高可用的服务。

除此之外,具体实践中,还有以下几点高可用的服务策略。

 

2.1 分级管理

运维上将服务器进行分级管理,核心应用和服务优先使用更好的硬件,在运维响应速度上也格外迅速。显然,用户及时付款比能不能评价商品更重要,所以订单、支付比评价服务有更高优先级。

同时在服务部署上也进行必要的隔离,避免故障的连锁反应。低优先级的服务通过启动不同的线程或者部署在不同的虚拟机上进行隔离,而高优先级的服务则需要部署在不同的物理机上,核心服务和数据甚至需要部署在不同地域的数据中心。

 

2.2 超时设置

由于服务端宕机、线程死锁等原因,可能导致应用程序对服务端的调用失去响应,进而导致用户请求长时间得不到响应,同时还占用应用程序的资源,不利于及时将访问请求转移到正常的服务器上。

在应用程序中设置服务调用的超时时间,一旦超时,通信框架就抛出异常,应用程序根据服务调度策略,可选择继续重试或将请求转移到提供相同服务的其他服务器上。

 

2.3 异步调用

应用对服务的调用通过消息队列等异步方式完成,避免一个服务失败导致整个应用请求失败的情况。如提交一个新用户注册请求,应用需要调用三个服务:将用户信息写入数据库,发送账号注册成功邮件,开通对应权限。如果采用同步服务调用,当邮件队列阻塞不能发送邮件时,会导致其他两个服务也无法执行,最终导致用户注册失败。

如果采用异步调用的方式,应用程序将用户注册信息发送给消息队列服务器后立即返回用户注册成功响应。而记录用户注册信息到数据库、发送用户注册成功邮件、调用用户服务开通权限这三个服务作为消息的消费者任务,分别从消息队列获取用户注册信息异步执行。即使邮件服务器队列阻塞,邮件不能成功发送,也不会影响其他服务的执行,用户注册操作可顺利完成,只是晚一点收到注册成功的邮件而已。

当然不是所有服务调用都可以异步调用,对于获取用户信息这类调用,采用异步方式会延长响应时间,得不偿失。对于那些必须确认服务调用成功才能继续下一步操作的应用也不适合使用异步调用。

 

2.4 服务降级

在网站访问高峰期,服务可能因为大量的并发调用而性能下降,严重时可能会导致服务宕机。为了保证核心应用和功能的正常运行,需要对服务进行降级。降级有两种手段:拒绝服务及关闭服务。

 

拒绝服务

决绝低优先级应用的调用,减少服务调用并发数,确保核心应用正常使用;或者随机拒绝部分请求调用,节约资源,让另一部分请求得以成功,避免要死大家一起死的惨剧。

 

关闭服务

关闭部分不重要的服务,或者服务内部关闭不重要的功能,以节约系统开销,为重要的服务和功能让出资源。

 

2.5 幂等性设计

应用调用服务失败后,会将调用请求重新发送到其他服务器,但是这个失败可能是虚假的失败。比如服务已经处理成功,但因为网络故障应用没有收到响应,这是应用重新提交请求就导致服务重复调用,如果这个服务是一个转账操作,就会产生严重后果。

服务重复调用时无法避免的,应用层也不关心服务是否真的失败,只要没有收到调用成功的响应,就可以认为调用失败,并重试服务调用。因此必须在服务层保证服务重复调用和调用一次产生的结果相同,即服务具有幂等性。

有些服务天然具有幂等性,比如将用户性别设置为男性,不管设置多少次,结果都一样。但是对于转账交易等操作,问题就会比较复杂,需要通过交易编号等信息进行服务调用有效性校验,只有有效的操作才能继续执行。

 

 

https://mp.weixin.qq.com/s/vkvYJnKfQyuUeD_BDQy_1g

 

 获取更多学习资料,可以加群:473984645或扫描下方二维码

 

标签:负载,调用,服务,请求,可用,架构,Session,服务器,之高
来源: https://www.cnblogs.com/lemonrel/p/11773752.html