其他分享
首页 > 其他分享> > 瑞利分布的随机数

瑞利分布的随机数

作者:互联网

一、功能

产生瑞利分布的随机数。

二、方法简介

瑞利分布的概率密度函数为
\[ f(x) = \frac{x}{\sigma ^{2} }e^{-x^{2}/2\sigma ^{2}} \ x > 0 \]
瑞利分布的均值为\(\sigma \sqrt{\frac{\pi }{2}}\),方差为\(\left ( 2 - \frac{\pi }{2} \right )\sigma ^{2}\)。

首先用逆变换法产生参数\(\beta = 2\)的指数分布的随机变量\(y\),其概率密度函数为\(f(y) = \frac{1}{2} e^{-\frac{y}{2}}\);然后通过变换\(x = \sigma \sqrt{y}\),产生瑞利分布的随机变量\(x\),具体方法如下:

  1. 产生均匀分布的随机数\(u\),即\(u \sim U(0,1)\);
  2. 计算\(y = - 2 \ ln(u)\);
  3. 计算\(x = \sigma \sqrt{y}\)。

三、使用说明

是用C语言实现产生瑞利分布随机数的方法如下:

/************************************
    sigma   ---瑞利分布的参数sigma
    seed    ---随机数种子
************************************/
#include "math.h"
#include "uniform.c"

double rayleigh(double sigma, long int *s)
{
    u = uniform(0.0, 1.0, s);
    x = -2.0 * log(u);
    x = sigma * sqrt(x);
    return(x);
}

uniform.c文件参见均匀分布的随机数

标签:frac,sqrt,瑞利,分布,随机数,sigma
来源: https://www.cnblogs.com/liam-ji/p/11631644.html