其他分享
首页 > 其他分享> > 洛谷P1353 USACO 跑步 Running

洛谷P1353 USACO 跑步 Running

作者:互联网

题目

一道入门的dp,首先要先看懂题目要求。

容易得出状态\(dp[i][j]\)定义为i时间疲劳度为j所得到的最大距离

有两个坑点,首先疲劳到0仍然可以继续疲劳。

有第一个方程:
\(dp[i][0]=max(dp[i-1][0],d[i][0])\)

而如果要休息则一定要休息到疲劳值为0才可以停止。

有第二个方程:

\(dp[i][0]=max(dp[i][0], dp[i-j][j])\)意思是i位置疲劳度为0时的最大距离,是i-j位置疲劳值为j时休息j天的最大距离。

而根据题目意思所得到的不休息选择跑步的方程是:

\(dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + d[i])\)

完善完善转移顺序就可得到程序:

#include <bits/stdc++.h>
#define N 1000101
#define int long long
using namespace std;
int n, m, d[N], dp[10031][531];//第n分钟必须休息到0
signed main()
{
//  freopen("data.in", "r", stdin);
    scanf("%lld%lld", &n, &m);  
    for (int i = 1; i <= n; i++)
        scanf("%lld", &d[i]);   
    for (int i = 1; i <= n; i++)
    {
        dp[i][0] = max(dp[i - 1][0], dp[i][0]);
        for (int j = 1; j <= m; j++)
            dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + d[i]);//不休息
        for (int j = 1; j <= min(m, n); j++)//休息
            dp[i][0] = max(dp[i][0], dp[i - j][j]);//i位置不疲劳的状态的值
    }
    for (int i = n; i <= n; i++)
        printf("%lld ", dp[i][0]);
    return 0;
}

标签:洛谷,疲劳,int,max,Running,题目,休息,P1353,dp
来源: https://www.cnblogs.com/liuwenyao/p/11665061.html