c-不应用Boost Spirit解析规则
作者:互联网
我在这里看不到我的错误..此规则可以解析一些内容,但最后两个示例没有.有人可以给我一个提示..
目标是一个解析器,可以识别成员属性访问和成员函数调用.也以某种方式链接
a()
a(para)
x.a()
x.a(para)
x.a(para).g(para).j()
x.y
x.y.z
x.y.z() <---fail
y.z.z(para) <--- fail
lvalue =
iter_pos >> name[_val = _1]
>> *(lit('(') > paralistopt > lit(')') >> iter_pos)[_val = construct<common_node>(type_cmd_fnc_call, LOCATION_NODE_ITER(_val, _2), key_this, construct<common_node>(_val), key_parameter, construct<std::vector<common_node> >(_1))]
>> *(lit('.') >> name_pure >> lit('(') > paralistopt > lit(')') >> iter_pos)[_val = construct<common_node>(type_cmd_fnc_call, LOCATION_NODE_ITER(_val, _3), key_this, construct<common_node>(_val), key_callname, construct<std::wstring>(_1), key_parameter, construct<std::vector<common_node> >(_2))]
>> *(lit('.') >> name_pure >> iter_pos)[_val = construct<common_node>(type_cmd_dot_call, LOCATION_NODE_ITER(_val, _2), key_this, construct<common_node>(_val), key_propname, construct<std::wstring>(_1))]
;
谢谢
马库斯
解决方法:
您提供的信息很少.让我通过这个猜谜游戏让您感到幽默:
让我们假设您想解析一个简单的“语言”,该语言仅允许成员表达式和函数调用,但被链接在一起.
现在,您的语法对参数一无所知(尽管很显然参数列表可以为空),所以让我继续前进,假设您要在那里接受相同类型的表达式(因此foo(a)可以,而且还有bar(foo(a))或bar(b.foo(a))).
由于您接受函数调用的链接,因此看来函数是一类对象(并且函数可以返回函数),因此也应该接受foo(a)(b,c,d).
您没有提到它,但是参数通常包含文字(sqrt(9)或println(“ hello world”)).
其他项目:
>您未说,但您可能想忽略某些地方的空白
>从iter_pos(ab)中使用,看来您有兴趣跟踪生成的AST中的原始源位置.
1.定义一个AST
我们应该像以往一样简单:
namespace Ast {
using Identifier = boost::iterator_range<It>;
struct MemberExpression;
struct FunctionCall;
using Expression = boost::variant<
double, // some literal types
std::string,
// non-literals
Identifier,
boost::recursive_wrapper<MemberExpression>,
boost::recursive_wrapper<FunctionCall>
>;
struct MemberExpression {
Expression object; // antecedent
Identifier member; // function or field
};
using Parameter = Expression;
using Parameters = std::vector<Parameter>;
struct FunctionCall {
Expression function; // could be a member function
Parameters parameters;
};
}
NOTE We’re not going to focus on showing source locations, but already made one provision, storing identifiers as an iterator-range.
NOTE Fusion-adapting the only types not directly supported by Spirit:
06001
We will find that we don’t use these, because Semantic Actions are more convenient here.
2.匹配语法
Grammar() : Grammar::base_type(start) {
using namespace qi;
start = skip(space) [expression];
identifier = raw [ (alpha|'_') >> *(alnum|'_') ];
parameters = -(expression % ',');
expression
= literal
| identifier >> *(
('.' >> identifier)
| ('(' >> parameters >> ')')
);
literal = double_ | string_;
string_ = '"' >> *('\\' >> char_ | ~char_('"')) >> '"';
BOOST_SPIRIT_DEBUG_NODES(
(identifier)(start)(parameters)(expression)(literal)(string_)
);
}
在此框架中,大多数规则都受益于自动属性传播.一个不是表达式:
qi::rule<It, Expression()> start;
using Skipper = qi::space_type;
qi::rule<It, Expression(), Skipper> expression, literal;
qi::rule<It, Parameters(), Skipper> parameters;
// lexemes
qi::rule<It, Identifier()> identifier;
qi::rule<It, std::string()> string_;
因此,让我们为语义动作创建一些帮助器.
NOTE An important take-away here is to create your own higher-level building blocks instead of toiling away with
boost::phoenix::construct<>
etc.
定义两个简单的构造函数:
struct mme_f { MemberExpression operator()(Expression lhs, Identifier rhs) const { return { lhs, rhs }; } };
struct mfc_f { FunctionCall operator()(Expression f, Parameters params) const { return { f, params }; } };
phx::function<mme_f> make_member_expression;
phx::function<mfc_f> make_function_call;
然后使用它们:
expression
= literal [_val=_1]
| identifier [_val=_1] >> *(
('.' >> identifier) [ _val = make_member_expression(_val, _1)]
| ('(' >> parameters >> ')') [ _val = make_function_call(_val, _1) ]
);
就这样.我们准备开始了!
3.演示
我创建了一个如下所示的测试床:
int main() {
using It = std::string::const_iterator;
Parser::Grammar<It> const g;
for (std::string const input : {
"a()", "a(para)", "x.a()", "x.a(para)", "x.a(para).g(para).j()", "x.y", "x.y.z",
"x.y.z()",
"y.z.z(para)",
// now let's add some funkyness that you didn't mention
"bar(foo(a))",
"bar(b.foo(a))",
"foo(a)(b, c, d)", // first class functions
"sqrt(9)",
"println(\"hello world\")",
"allocate(strlen(\"aaaaa\"))",
"3.14",
"object.rotate(180)",
"object.rotate(event.getAngle(), \"torque\")",
"app.mainwindow().find_child(\"InputBox\").font().size(12)",
"app.mainwindow().find_child(\"InputBox\").font(config().preferences.baseFont(style.PROPORTIONAL))"
}) {
std::cout << " =========== '" << input << "' ========================\n";
It f(input.begin()), l(input.end());
Ast::Expression parsed;
bool ok = parse(f, l, g, parsed);
if (ok) {
std::cout << "Parsed: " << parsed << "\n";
}
else
std::cout << "Parse failed\n";
if (f != l)
std::cout << "Remaining unparsed input: '" << std::string(f, l) << "'\n";
}
}
尽管看起来令人难以置信,但它已经解析了所有测试用例并打印出:
=========== 'a()' ========================
Parsed: a()
=========== 'a(para)' ========================
Parsed: a(para)
=========== 'x.a()' ========================
Parsed: x.a()
=========== 'x.a(para)' ========================
Parsed: x.a(para)
=========== 'x.a(para).g(para).j()' ========================
Parsed: x.a(para).g(para).j()
=========== 'x.y' ========================
Parsed: x.y
=========== 'x.y.z' ========================
Parsed: x.y.z
=========== 'x.y.z()' ========================
Parsed: x.y.z()
=========== 'y.z.z(para)' ========================
Parsed: y.z.z(para)
=========== 'bar(foo(a))' ========================
Parsed: bar(foo(a))
=========== 'bar(b.foo(a))' ========================
Parsed: bar(b.foo(a))
=========== 'foo(a)(b, c, d)' ========================
Parsed: foo(a)(b, c, d)
=========== 'sqrt(9)' ========================
Parsed: sqrt(9)
=========== 'println("hello world")' ========================
Parsed: println(hello world)
=========== 'allocate(strlen("aaaaa"))' ========================
Parsed: allocate(strlen(aaaaa))
=========== '3.14' ========================
Parsed: 3.14
=========== 'object.rotate(180)' ========================
Parsed: object.rotate(180)
=========== 'object.rotate(event.getAngle(), "torque")' ========================
Parsed: object.rotate(event.getAngle(), torque)
=========== 'app.mainwindow().find_child("InputBox").font().size(12)' ========================
Parsed: app.mainwindow().find_child(InputBox).font().size(12)
=========== 'app.mainwindow().find_child("InputBox").font(config().preferences.baseFont(style.PROPORTIONAL))' ========================
Parsed: app.mainwindow().find_child(InputBox).font(config().preferences.baseFont(style.PROPORTIONAL))
4.太过真实了吗?
你是对的.我作弊了.我没有向您显示调试打印已解析的AST所需的以下代码:
namespace Ast {
static inline std::ostream& operator<<(std::ostream& os, MemberExpression const& me) {
return os << me.object << "." << me.member;
}
static inline std::ostream& operator<<(std::ostream& os, FunctionCall const& fc) {
os << fc.function << "(";
bool first = true;
for (auto& p : fc.parameters) { if (!first) os << ", "; first = false; os << p; }
return os << ")";
}
}
这只是调试打印,因为字符串文字没有正确往返.但这只是10行代码,这是一个好处.
5.蒙蒂山:来源位置
这引起了您的兴趣,因此让我们展示一下它的工作原理.让我们添加一个简单的循环来打印标识符的所有位置:
using IOManip::showpos;
for (auto& id : all_identifiers(parsed)) {
std::cout << " - " << id << " at " << showpos(id, input) << "\n";
}
当然,这引出了一个问题,showpos和all_identifiers是什么?
namespace IOManip {
struct showpos_t {
boost::iterator_range<It> fragment;
std::string const& source;
friend std::ostream& operator<<(std::ostream& os, showpos_t const& manip) {
auto ofs = [&](It it) { return it - manip.source.begin(); };
return os << "[" << ofs(manip.fragment.begin()) << ".." << ofs(manip.fragment.end()) << ")";
}
};
showpos_t showpos(boost::iterator_range<It> fragment, std::string const& source) {
return {fragment, source};
}
}
至于标识符提取:
std::vector<Identifier> all_identifiers(Expression const& expr) {
std::vector<Identifier> result;
struct Harvest {
using result_type = void;
std::back_insert_iterator<std::vector<Identifier> > out;
void operator()(Identifier const& id) { *out++ = id; }
void operator()(MemberExpression const& me) { apply_visitor(*this, me.object); *out++ = me.member; }
void operator()(FunctionCall const& fc) {
apply_visitor(*this, fc.function);
for (auto& p : fc.parameters) apply_visitor(*this, p);
}
// non-identifier expressions
void operator()(std::string const&) { }
void operator()(double) { }
} harvest { back_inserter(result) };
boost::apply_visitor(harvest, expr);
return result;
}
那是一个树访客,它递归地获取所有标识符,并将它们插入到容器的后面.
输出如下所示(摘录):
=========== 'app.mainwindow().find_child("InputBox").font(config().preferences.baseFont(style.PROPORTIONAL))' ========================
Parsed: app.mainwindow().find_child(InputBox).font(config().preferences.baseFont(style.PROPORTIONAL))
- app at [0..3)
- mainwindow at [4..14)
- find_child at [17..27)
- font at [40..44)
- config at [45..51)
- preferences at [54..65)
- baseFont at [66..74)
- style at [75..80)
- PROPORTIONAL at [81..93)
标签:c,parsing,boost-spirit 来源: https://codeday.me/bug/20191009/1879904.html