其他分享
首页 > 其他分享> > P1037 产生数

P1037 产生数

作者:互联网

P1037 产生数

一个数字能变换的种类为可直接变换的和可间接变换的比如 1 2 2 3那么就自动多出来一个条件 13就是1 有三种变化这种情况用弗洛伊德算法 找到一个数字可以变化的次数和之后在连续乘起来 得到的结果就是变化次数

代码如下:

#include<bits/stdc++.h>
using namespace std;
int tag[10][10];
int d[10];
int p[1000];
int main(){
    string a;
    int n;
    while(cin>>a>>n){
        int x,y;
        for(int i=0;i<n;i++){
            cin>>x>>y;
            tag[x][y]=1;
        }
    for(int k=1;k<=9;k++)
        for(int i=0;i<=9;i++)
            for(int j=1;j<=9;j++)
                if(tag[i][k]&&tag[k][j]) tag[i][j]=1;
        for(int i=0;i<10;i++){
            tag[i][i]=1;
            for(int j=0;j<10;j++)
                if(tag[i][j])
                d[i]++;
        }
        int z=0;
        p[0]=1;
        for(int i=0;a[i];i++){
            z=0;
            int x=d[a[i]-'0'];
            for(int i=0;i<500;i++)
            {
                p[i]=(p[i]*x+z);
                z=p[i]/10;
                p[i]%=10;
            }
        }
        int i=500;
        while(p[i]==0) i--;
        for(;i>=0;i--){
            cout<<p[i];
        }
        cout<<endl;
    }
}

标签:10,次数,产生,P1037,变换,int,tag
来源: https://blog.csdn.net/qwejad/article/details/101221894