其他分享
首页 > 其他分享> > POJ1094 Sorting It All Out 拓扑排序

POJ1094 Sorting It All Out 拓扑排序

作者:互联网

思路借鉴:https://www.cnblogs.com/yueshuqiao/archive/2011/08/16/2140485.html
题意:A~Z中n个字母,给你m对先后关系,让你判断它们的顺序情况。
思路:有以下三种情况:
1、有环,说明给定次序矛盾。
2、能确定唯一次序。
3、无法确定唯一次序。
其中1、2可以不用完m对先后关系,而3必须用完m对先后关系才能确定。
因为m对关系是逐一加入的,所以每当加入一对关系就要进行一次拓扑排序(数据量不大,可以这么造)。
只要出现环,或者已经排好序,之后的数据就不再处理(尽管排好序后出现环也不管)。
若所有数据处理完后,还是没有确定次序,就输出不能确定次序。
当然这里有很多剪枝,比如当输入的次序之前出现相反的次序时,一定有环等等。但这里数据量不大,剪枝也没必要。
下面是AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define inf 0x3f3f3f3f
#define cl(a,b) memset(a,b,sizeof(a))
using namespace std;
int n,m;
int in[30],map[30][30],ans[30];
int topo(){//三种返回的情况
			//这里cnt要初始化!!! 
	int num,pos,cnt=0;//统计入度为0的个数 和入度为0的位置 和入队的个数 
	int temp[30];
	for(int i=1;i<=n;i++){//复制一份入度 
		temp[i]=in[i];
	}
	int flag=1;//标记是否可确定唯一顺序 
	for(int i=1;i<=n;i++){ 
		num=0;//因为每次扫都要统计一下入度为0的次数
		for(int j=1;j<=n;j++){
			if(temp[j]==0){
				num++;
				pos=j; 
			}
		}
		if(num==0) return 0;//如果没有入度为0的 说明有环
		if(num>=2) flag=-1;//同时出现两个头头,不能判定有序 又怕后面出现
		ans[++cnt]=pos;
		for(int j=1;j<=n;j++){
			if(map[pos][j]){
				temp[j]--;
			}
		}
		temp[pos]--;//入队的这个度数就不管了 
	}
	return flag;//只要有一次让flag=-1 那就一定是-1 那后面的处理只是为了判断有环 
}
int main(){
	while(scanf("%d%d",&n,&m)!=EOF){
		if(n==0&&m==0) break;
		cl(in,0);
		cl(map,0);
		cl(ans,0);
		char s[5];
		int flag=-1;
		for(int i=1;i<=m;i++){//对于每次增加的边
			scanf("%s",s);
			if(flag==0||flag==1) continue;
			int u=s[0]-'A'+1,v=s[2]-'A'+1;
			in[v]++;
			map[u][v]=1;
			flag=topo();
			if(flag==0){//有环 
				printf("Inconsistency found after %d relations.\n",i); 
			}if(flag==1){//能排序 
				printf("Sorted sequence determined after %d relations: ",i);
				for(int i=1;i<=n;i++){
					printf("%c",(char)(ans[i]+'A'-1));
				}
				printf(".\n");
			}
		}
		if(flag==-1){//无法确定顺序
			printf("Sorted sequence cannot be determined.\n");
		} 
	}
	return 0;
}

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy…y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.
Sample Input
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

标签:Sorting,POJ1094,sequence,int,relations,次序,sorted,include,Out
来源: https://blog.csdn.net/weixin_43735161/article/details/100511302