其他分享
首页 > 其他分享> > BZOJ 1070: [SCOI2007]修车 最小费用最大流

BZOJ 1070: [SCOI2007]修车 最小费用最大流

作者:互联网

title

BZOJ 1070
LUOGU 2053
题目描述

同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

输入输出格式
输入格式:

第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。

输出格式:

最小平均等待时间,答案精确到小数点后2位。

输入输出样例
输入样例#1:

2 2
3 2
1 4

输出样例#1:

1.50

说明

(2<=M<=9,1<=N<=60), (1<=T<=1000)

analysis

读完题目,发现很像一个二分图匹配问题,所以就可以用网络流来写了。

发现题目中的时间相当于费用,便可以写费用流了。

那我就想:1. 建立 \(超级源点s\) ,与所有车子连边,容量为 1,费用为 0,

  1. 建立\(超级汇点t\),与所有的师傅连边,容量为 1,费用为 0,
  2. 再将 所有的车子 与 所有的师傅 按照 费用矩阵 连边。

好像这样就可以了(吗)?

嗯,经过与 \(Chdy\) 的讨论,他点醒了我,观察数据范围,一定有一个人修了好多车子,这些车的顾客需要受到前面人的限制,就是说,各个修车的顾客都受各自前面人的限制,也就是 师傅数 需要被拆成 \(n*m\) 个,来满足每个时刻的需求。

所以上面的建图只需要将第 3 步详细一下就行,大意上是一样的。

具体的看代码注释。

code

/*
    Problem:LUOGU 2053
    Author:G-hsm
    Date: 2019.6.17 06:38
    State: Solved
    Memo:最小费用最大流
*/

#include<bits/stdc++.h>
using namespace std;
const int maxn=1010,maxm=1e5+10,inf=0x3f3f3f3f;

char buf[1<<15],*fs,*ft;
inline char getc() { return (ft==fs&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),ft==fs))?0:*fs++; }
template<typename T>inline void read(T &x)
{
    x=0;
    T f=1, ch=getchar();
    while (!isdigit(ch) && ch^'-') ch=getchar();
    if (ch=='-') f=-1, ch=getchar();
    while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
    x*=f;
}

template<typename T>inline void write(T x)
{
    if (!x) { putchar('0'); return ; }
    if (x<0) putchar('-'), x=-x;
    T num=0, ch[20];
    while (x) ch[++num]=x%10+48, x/=10;
    while (num) putchar(ch[num--]);
}

int ver[maxm<<1],edge[maxm<<1],Next[maxm<<1],cost[maxm<<1],head[maxn],len=1;
inline void add(int x,int y,int z,int c)
{
    ver[++len]=y,edge[len]=z,cost[len]=c,Next[len]=head[x],head[x]=len;
    ver[++len]=x,edge[len]=0,cost[len]=-c,Next[len]=head[y],head[y]=len;
}

int s,t;
int dist[maxn],incf[maxn],pre[maxn];
bool vis[maxn];
inline bool spfa()
{
    memset(dist,0x3f,sizeof(dist));
    memset(vis,0,sizeof(vis));
    queue<int>q;q.push(s);
    dist[s]=0,vis[s]=1,incf[s]=1<<30;
    while (!q.empty())
    {
        int x=q.front();
        q.pop();
        vis[x]=0;
        for (int i=head[x]; i; i=Next[i])
        {
            if (!edge[i]) continue;
            int y=ver[i];
            if (dist[y]>dist[x]+cost[i])
            {
                dist[y]=dist[x]+cost[i];
                incf[y]=min(incf[x],edge[i]);
                pre[y]=i;
                if (!vis[y]) q.push(y),vis[y]=1;
            }
        }
    }
    if (dist[t]==inf) return false;
    else return true;
}

long long maxflow,ans;
inline void update()
{
    int x=t;
    while (x!=s)
    {
        int i=pre[x];
        edge[i]-=incf[t];
        edge[i^1]+=incf[t];
        x=ver[i^1];
    }
    maxflow+=incf[t];
    ans+=dist[t]*incf[t];
}

int main()
{
    int m,n;//1~n 为车数,n+1~n+n*m 为师傅数
    read(m);read(n);
    for (int i=1; i<=n; ++i)
        for (int j=1,c; j<=m; ++j)
        {
            read(c);
            for (int k=1; k<=n; ++k) add(i,j*n+k,1,c*k);//add(i,n+hash(j,k),1,c*k);
        }//将m位师傅拆成n*m个点,第(i-1)*n+j个点表示的是在修第j辆车的第i位师傅

    s=0,t=n+n*m+1;
    for (int i=1; i<=n; ++i) add(s,i,1,0);//将源点与车分别连起来
    for (int i=n+1; i<=n+n*m; ++i) add(i,t,1,0);//将师傅分别与汇点连起来
    while (spfa()) update();
    printf("%.2f\n",ans/(double)n);
    return 0;
}

标签:费用,ch,dist,int,1070,incf,技术人员,SCOI2007,BZOJ
来源: https://www.cnblogs.com/G-hsm/p/11329989.html