其他分享
首页 > 其他分享> > [洛谷P2472] [SCOI2007]蜥蜴

[洛谷P2472] [SCOI2007]蜥蜴

作者:互联网

题目链接:

蜥蜴

题目分析:

一道网络流,先来分析一下问题:
在一个\(r*c\)的图中分布了一些数,其他地方都用\(0\)填充,我们分别从指定的一些数出发,每次可以移动到周围距离为\(d\)以内的数上(或图外),原来的数会被\(-1\),任何时候数不能为负。各个数走法之间互相影响。问至多有多少个数出发能到达图外?

把这个题的限制条件列出来一下吧:

首先我的角度是以每个石柱本身的限制条件入手。我们知道一个高度为\(h\)的石柱最多可以被经过\(h\)次(显然,蜥蜴是不走回头路的,因为这是对资源的浪费),而网络流的基本性质之一,是每条边最多将其上限流满(相当于有一个上限),那么可以考虑将石柱的高度作为网络流建图边上的限制。但是每个石柱是一个点,怎么办呢,我们就考虑把每个石柱拆点,把编号为\(i\)的点拆成\(i\)和\(i + r * c\),然后把流入这个点的边全部接到\(i\)上,流出这个点的边全部接到\(i+r*c\)上,把限制加在两点之间的连边上(流量为\(h\))。这是对于石柱的处理,也是我认为这个问题中最关键的一步。

剩下的就比较好办了。
对于“每个石柱只能站一只蜥蜴”的限制条件,将“只能站一只”作为上界,源点向蜥蜴所在的每个石柱连边,边容量为\(1\)
对于石柱和石柱之间,石柱与图边界之间距离小于等于\(d\)才能到达的限制条件,因为图很小,我们考虑直接暴力枚举两个点,如果两个点都有石柱且距离小于等于\(d\),那么我们直接考虑两个石柱之间连一条容量为\(INF\)的边:除了距离,没有别的限制条件了,而距离的限制条件已经判断过了,并且每个石柱的限制已经在拆点的过程中加上去了,所以容量不需要做其他的限制,直接连\(INF\)即可。对于到达边界的限制条件,我们同样连一条\(INF\)的边(和前面的原因类似),距离判断只需要判断横纵就行,因为根据勾股定理,横纵都比\(d\)大显然斜着也比\(d\)大。

代码:


// luogu-judger-enable-o2
#include <bits/stdc++.h>
#define INF (1000000000 + 7)
#define N (10005 + 5)
#define M (100000 + 5)
#define int long long
using namespace std;
inline int read(){
    int cnt = 0, f = 1; char c;
    c = getchar();
    while (!isdigit(c)) {
        if(c == '-') f = -f;
        c = getchar();
    }
    while (isdigit(c)) {
        cnt = cnt * 10 + c - '0';
        c = getchar();
    }   
    return cnt * f;
}
int r, c, d, tot = 1, n;
int S, T;
int first[M], nxt[M], to[M], flow[M];
int mapp[N][N], a[N][N];
int dep[M], cnt[M];
char lizard[N][N];
inline void Add(int x, int y, int z) {
    nxt[++tot] = first[x], first[x] = tot, to[tot] = y, flow[tot] = z;
    nxt[++tot] = first[y], first[y] = tot, to[tot] = x, flow[tot] = 0;
} 
inline bool pd(int i, int j) {
    if (i <= d || j <= d) return true;
    if (r - i + 1 <= d || c - j + 1 <= d) return true;
    return false;
}
inline void build() {
    S = 1;
    for (register int i = 1; i <= r; i++)
        for (register int j = 1; j <= c; j++)
            a[i][j] = ++tot;

    for (register int i = 1; i <= r; i++)
        scanf("%s", lizard[i] + 1);
    for (register int i = 1; i <= r; i++)
        for (register int j = 1; j <= c; j++)
            mapp[i][j] = lizard[i][j] - '0';
            
    T = r * c * 2 + 2, tot = 1;

    for (register int i = 1; i <= r; i++)
            scanf("%s", lizard[i] + 1); 
    
    for (register int i = 1; i <= r; i++)
        for (register int j = 1; j <= c; j++) 
            if (mapp[i][j]) {
                Add(a[i][j], a[i][j] + r * c, mapp[i][j]);
                if (pd(i, j)){
                     Add(a[i][j] + r * c, T, INF);
//                   cout<<i<<" "<<j<<endl;
                }
            }
            
    for (register int i = 1; i <= r; i++)
        for (register int j = 1; j <= c; j++) 
            for (register int k = 1; k <= r; k++) 
                for (register int p = 1; p <= c; p++) {
                    if (i == k && j == p) continue;
                    if (mapp[i][j] && mapp[k][p])
                    if ((i - k) * (i - k) + (j - p) * (j - p) <= d * d)
                        Add(a[i][j] + r * c, a[k][p], INF);
//                      Add(a[k][p] + r * c, a[i][j], INF);
                    }
    for (register int i = 1; i <= r; i++)
        for (register int j = 1; j <= c; j++)
            if (lizard[i][j] == 'L') Add(S, a[i][j], 1), ++n;
}
inline void bfs_(int s) {
    memset(dep, 0xff, sizeof(dep));
    dep[s] = 0;
    cnt[0] = 1;
    queue<int> q;
    q.push(s);
    while (!q.empty()) {
        int p = q.front();
        q.pop();
        for (register int i = first[p]; i >= 2; i = nxt[i]) {
            int v = to[i];
            if (dep[v] == -1) {
                ++cnt[dep[v] = dep[p] + 1];
                q.push(v);
            }
        }
    }
}

int max_flow;

int dfs_(int p, int f) {
    if (p == T) {
        max_flow += f;
        return f;
    }
    int u = 0;
    for (register int i = first[p]; i >= 2; i = nxt[i]) {
        int v = to[i];
        if (flow[i] && dep[v] == dep[p] - 1) {
            int uu = dfs_(v, min(flow[i], f - u)); 
            if (uu) {
                flow[i] -= uu;
                flow[i ^ 1] += uu;
                u += uu;
            }
            if (u >= f) {
                return u;
            }
        }
    }
    if (!--cnt[dep[p]]) {
        dep[S] = r * c * 2 + 10;
    }
    ++cnt[++dep[p]];
    return u;
}
signed main() {
    r = read(); c = read(); d = read();
    build();
    bfs_(T);
    while (dep[S] < 2 * r * c + 9) dfs_(S, INF);
    printf("%lld", n - max_flow);
    return 0;
}

标签:cnt,洛谷,int,石柱,flow,tot,dep,P2472,SCOI2007
来源: https://blog.csdn.net/qq_41741964/article/details/98563877