【P4178】Tree——点分治
作者:互联网
(题面来自luogu)
题目描述
给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K
输入格式
N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k
输出格式
一行,有多少对点之间的距离小于等于k
原本是点分治的模版题,从昨晚调到今晚……这里记录下点分治实现时需要注意的几个细节。
1、分治过程中递归子树大小的确定
以下是点分治过程的核心函数,其中cur表示以u为根进行分治的树的大小。
- void Divide(int u) {
- vis[u] = true;
- ans += Solve(u, 0);
- int tcur = cur;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (vis[v]) continue;
- ans -= Solve(v, edge[i].w);
- Mn = inf;
- //cur = size[v];
- cur = size[u] > size[v] ? size[v] : tcur - size[u];
- Find_rt(v, u);
- Divide(root);
- }
- }
重点在第10、11行递归子树大小确定的两种写法,其中第11行未注释的版本是正确的。考虑到我们每次在当前树中选重心为根进行分治,那么u并不一定是该树在搜索树意义下的根节点。也就是说,u的子节点v有可能是u在搜索树上的父亲,因此在确定递归子树大小时加入一个特判。因为cur的值会因为遍历先前的v而改变,我们在第4行用一个新变量记录当前树的大小。这个就是调了一天的锅的出处
(不过据说不加这个判断复杂度也不会劣化……貌似还有人证明了,不过保证正确性显然是好的)
2、关于点分治两种写法的优劣
点分治不同写法的讲解请见我的博客:https://www.cnblogs.com/TY02/p/11203163.html
之前认为用容斥算两遍的做法常数过大,比较起来把子树分开互相统计更好。实际上第二种做法有它的局限性:例如在这个题中,暴力枚举每条路径会T飞,我们只能把u子树中所有的节点深度都统计一遍,排序后利用单调性用双指针统计答案。这就暴露了分子树统计的劣势,它只可以把子树中两点不重不漏地两两枚举、组合路径信息,无法在其中嵌套别的操作。容斥的优点在于它把所有的节点信息一次性统计出来,适合类似本题利用数据单调性排序来统计的情形。这个题也不排序也可以用权值树状数组来做,复杂度相同,常数因为要清空数组会大一些。
完整代码:
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #define BUG puts("$$$")
- #define rint register int
- #define maxn 40010
- typedef long long ll;
- using namespace std;
- const int inf = (int)1e9;
- template <typename T>
- void read(T &x) {
- x = 0;
- char ch = getchar();
- // int f = 1;
- while (!isdigit(ch)) {
- // if (ch == '-') f = -1;
- ch = getchar();
- }
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- // x *= f;
- }
- int n, k;
- int ans = 0;
- int head[maxn], top;
- struct E {
- int to, nxt, w;
- } edge[maxn << 1];
- inline void insert(int u, int v, int w) {
- edge[++top] = (E) {v, head[u], w};
- head[u] = top;
- }
- bool vis[maxn];
- int size[maxn], root, Mn, cur;
- void Find_rt(int u, int pre) {
- size[u] = 1;
- int Mxson = 0;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || vis[v]) continue;
- Find_rt(v, u);
- size[u] += size[v];
- Mxson = max(Mxson, size[v]);
- }
- Mxson = max(Mxson, cur - size[u]);
- if (Mn > Mxson)
- root = u, Mn = Mxson;
- }
- int chd[maxn], tot;
- void calc(int u, int pre, int d) {
- chd[++tot] = d;
- if (d >= k) return;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v == pre || vis[v]) continue;
- calc(v, u, d + edge[i].w);
- }
- }
- int Solve(int u, int extra) {
- int ret = 0;
- tot = 0;
- calc(u, 0, extra);
- sort(chd + 1, chd + 1 + tot);
- rint l = 1, r = tot;
- while (l < r)
- chd[l] + chd[r] <= k ? (ret += (r - l), ++l) : (--r);
- return ret;
- }
- void Divide(int u) {
- vis[u] = true;
- ans += Solve(u, 0);
- int tcur = cur;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (vis[v]) continue;
- ans -= Solve(v, edge[i].w);
- Mn = inf;
- //cur = size[v];
- cur = size[u] > size[v] ? size[v] : tcur - size[u];
- Find_rt(v, u);
- Divide(root);
- }
- }
- int main() {
- read(n);
- int u, v, w;
- for (int i = 1; i < n; ++i) {
- read(u), read(v), read(w);
- insert(u, v, w), insert(v, u, w);
- }
- read(k);
- Mn = inf, cur = n;
- Find_rt(1, 0);
- Divide(root);
- printf("%d", ans);
- return 0;
- }
标签:ch,Mxson,cur,int,分治,Tree,edge,P4178,size 来源: https://www.cnblogs.com/TY02/p/11267061.html