其他分享
首页 > 其他分享> > 5098: [BZOJ1098][POI2007]办公楼biu

5098: [BZOJ1098][POI2007]办公楼biu

作者:互联网

5098: [BZOJ1098][POI2007]办公楼biu

没有数据结构就很棒

一个看上去非常玄学的代码

const int N=1e5+10,M=2e6+10;
  
int n,m;
int fa[N];
int Find(int x){ return fa[x]==x?x:fa[x]=Find(fa[x]); }
  
vector <int> G[N];
typedef vector <int> ::iterator iter;
  
  
void merge(int x,int y){
    x=Find(x),y=Find(y);
    if(x==y) return;
    vector <int> tmp;tmp.clear();
    if(G[x].size()>G[y].size()) swap(x,y);
    int p=0;
    for(reg int i=0;i<(int)G[x].size();i++){
        while(p<(int)G[y].size()&&G[y][p]<G[x][i]) p++;
        if(p>=(int)G[y].size()||G[y][p]!=G[x][i]) {
            tmp.push_back(G[x][i]);
            G[x].erase(G[x].begin()+i);
            i--;
        } 
    }
    fa[y]=x;
    rep(i,0,tmp.size()-1) merge(x,tmp[i]);
}
  
int cnt[N];
int ans[N],ac;
bool go[N];
  
  
  
void Sort(vector <int> &V){
    if(V.size()<20000) return sort(V.begin(),V.end());
    memset(go,0,sizeof go);
    rep(i,0,V.size()) go[V[i]]=true;
    V.clear();
    rep(i,1,n) if(go[i]) V.push_back(i);
}
 
int num[N]; 
 
bool cmp(int x,int y){
    return G[x].size()<G[y].size();
}
  
int main(){
    n=rd(),m=rd();
    rep(i,1,n) fa[i]=num[i]=i;
    rep(i,1,m) {
        int u=rd(),v=rd();
        G[u].push_back(v);
        G[v].push_back(u);
    }
    rep(i,1,n) Sort(G[i]);
    sort(num+1,num+n+1,cmp);
    rep(i,1,n) if(Find(num[i])==num[i]) {
        memset(go,0,sizeof go);
        rep(j,0,G[num[i]].size()-1) go[G[num[i]][j]]=1;
        rep(j,1,n) if(num[i]!=j&&!go[j]) merge(num[i],j);
    }
    rep(i,1,n) cnt[Find(i)]++;
    rep(i,1,n) if(cnt[i]) ans[++ac]=cnt[i];
    sort(ans+1,ans+ac+1);
    printf("%d\n",ac);
    rep(i,1,ac) printf("%d",ans[i]),putchar(i==ac?'\n':' ');
}
  

我这个代码大概是在讲这样的:

按照出度排序,没有连边的点必须合并,最后找集合个数

但是合并的时候要注意用y的答案更新x,这样y就不用再跑一次了(这里的总复杂度较为诡异)

更新过程:遍历x的边,如果y的边中没有x的这条边,那么就将其删去,并且将这个点合并


首先根据鸽巢原理,出度最小的点最大出度必然是\(\frac{m}{n}\)

它的边数也是\(\frac{m}{n}\)

每次和其他的点合并,这个复杂度是 \(\frac{m}{n} \cdot m\) (事实上是远远跑不到的!因为每次都会删去大量的边!)

所以哪,是不会T的

然后由于合并完之后也就剩下不到\(\frac{m}{n}\)个点了,所以这里就算你暴力\(O(n)\)合并也没关系

最后是你们担心的\(\frac{m}{n} \cdot m\)会TLE

瞪眼一看当\(m=2e6,n\)较小时就T了

哪你n较小时直接跑\(O(n^2)\)不就是了 吐舌头

注意时限是20s的这个代码还根本跑不满,所以自然不用担心!

tips: vector可以用链表优化更棒

标签:5098,tmp,frac,int,POI2007,BZOJ1098,fa,vector,size
来源: https://www.cnblogs.com/chasedeath/p/11258765.html