其他分享
首页 > 其他分享> > 使用sklearn进行数据挖掘

使用sklearn进行数据挖掘

作者:互联网

文章目录

1. 数据挖掘步骤

使用sklearn优雅地进行数据挖掘

数据采集,数据分析,特征工程,训练模型,模型评估
在这里插入图片描述

说明
sklearn.perprocessing StandardScaler 标准化
sklearn.perprocessing MinMaxScaler 区间缩放
sklearn.perprocessing Normalier 归一化
sklearn.perprocessing Binarizer 定量特征二值化
sklearn.perprocessing OneHotEncoder 定量特征编码
sklearn.perprocessing Imputer 缺失值计算
sklearn.perprocessing PolynomialFeatures 多项式变换
sklearn.perprocessing FunctionThransformer 自定义函数变换
sklearn.feature_selection VarianceThreshold 方差选择
sklearn.feature_selection SelectKBest 自定义特征评估选择
sklearn.feature_selection SelectKBest+chi2 递归特征消除法
sklearn.feature_selection RFE 方差选择
sklearn.feature_selection SelectFromModel 自定义模型训练选择法
sklearn.decomposition PCA PCA降维
sklearn.lda LDA LDA降维

关键技术:并行处理,流水线处理,自动化调参,持久化
训练好的模型是贮存在内存中的数据,持久化能够将这些数据保存在文件系统中,之后使用时无需再进行训练,直接从文件系统中加载即可。

2. 并行处理

并行处理使得多个特征处理工作能够并行地进行,分为:整体并行处理、部分并行处理

from numpy import log1p
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.pipeline import FeatureUnion

#新建将整体特征矩阵进行对数函数转换的对象
step2_1 = ('ToLog', FunctionTransformer(log1p))
#新建将整体特征矩阵进行二值化类的对象
step2_2 = ('ToBinary', Binarizer())
#新建整体并行处理对象
#参数transformer_list为需要并行处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
step2 = ('FeatureUnion', FeatureUnion(transformer_list=[step2_1, step2_2, step2_3]))
from numpy import log1p
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer

#新建将部分特征矩阵进行定性特征编码的对象
step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
#新建将部分特征矩阵进行对数函数转换的对象
step2_2 = ('ToLog', FunctionTransformer(log1p))
#新建将部分特征矩阵进行二值化类的对象
step2_3 = ('ToBinary', Binarizer())
#新建部分并行处理对象
#参数transformer_list为需要并行处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
#参数idx_list为相应的需要读取的特征矩阵的列
step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))

3. 流水线处理

from numpy import log1p
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

#新建计算缺失值的对象
step1 = ('Imputer', Imputer())
#新建将部分特征矩阵进行定性特征编码的对象
step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
#新建将部分特征矩阵进行对数函数转换的对象
step2_2 = ('ToLog', FunctionTransformer(log1p))
#新建将部分特征矩阵进行二值化类的对象
step2_3 = ('ToBinary', Binarizer())
#新建部分并行处理对象,返回值为每个并行工作的输出的合并
step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))
#新建无量纲化对象
step3 = ('MinMaxScaler', MinMaxScaler())
#新建卡方校验选择特征的对象
step4 = ('SelectKBest', SelectKBest(chi2, k=3))
#新建PCA降维的对象
step5 = ('PCA', PCA(n_components=2))
#新建逻辑回归的对象,其为待训练的模型作为流水线的最后一步
step6 = ('LogisticRegression', LogisticRegression(penalty='l2'))
#新建流水线处理对象
#参数steps为需要流水线处理的对象列表,该列表为二元组列表,第一元为对象的名称,第二元为对象
pipeline = Pipeline(steps=[step1, step2, step3, step4, step5, step6])

4.自动化调参

from sklearn.grid_search import GridSearchCV

#新建网格搜索对象
#第一参数为待训练的模型
 #param_grid为待调参数组成的网格,字典格式,键为参数名称(格式“对象名称__子对象名称__参数名称”),值为可取的参数值列表
 grid_search = GridSearchCV(pipeline, param_grid={'FeatureUnionExt__ToBinary__threshold':[1.0, 2.0, 3.0, 4.0], 'LogisticRegression__C':[0.1, 0.2, 0.4, 0.8]})
#训练以及调参
grid_search.fit(iris.data, iris.target)

5.持久化

#持久化数据
#第一个参数为内存中的对象
#第二个参数为保存在文件系统中的名称
#第三个参数为压缩级别,0为不压缩,3为合适的压缩级别
dump(grid_search, 'grid_search.dmp', compress=3)
#从文件系统中加载数据到内存中
grid_search = load('grid_search.dmp')
类或方法 说明
sklearn.pipeline Pipeline 流水线处理
sklearn.pipeline FeatureUnion 并行处理
sklearn.grid_searcn GridSaerchCV 网格搜索参数
sklearn.joblib dump 数据持久化
sklearn.joblib load 从文件系统中加载数据至内存

标签:对象,并行处理,step2,使用,数据挖掘,import,新建,sklearn
来源: https://blog.csdn.net/mys_mys/article/details/96567079