其他分享
首页 > 其他分享> > matlab中的lsqcurvefit 拟合

matlab中的lsqcurvefit 拟合

作者:互联网

非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。今进行曲线拟合,求x使得输出的如下最小二乘表达式成立:
min Σ(F(x,xdatai)-ydatai)^2

函数 lsqcurvefit
格式 x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(…)
[x,resnorm,residual] = lsqcurvefit(…)
[x,resnorm,residual,exitflag] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…)
参数说明:
x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;
lb、ub为解向量的下界和上界lb≤x≤ub,若没有指定界,则lb=[ ],ub=[ ];
options为指定的优化参数;
fun为待拟合函数,计算x处拟合函数值,其定义为 function F = myfun(x,xdata)
resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;
residual=fun(x,xdata)-ydata,即在x处的残差;
exitflag为终止迭代的条件;
output为输出的优化信息;
lambda为解x处的Lagrange乘子;
jacobian为解x处拟合函数fun的jacobian矩阵。

例: 求解如下最小二乘非线性拟合问题
已知输入向量xdata和输出向量ydata,且长度都是n,待拟合函数的表达式为:

ydata(i)=x(1)*xdata2+x(2)*sin(xdata)+x(3)*xdata3

即表达式的参数为[x(1),x(2),x(3)]。目标函数为: minΣ( F(x,xdata) - ydata )^2

其中:F(x,xdata) = x(1)*xdata^2 + x(2)*sin(xdata) + x(3)*xdata^3
初始解向量为x0=[0.3, 0.4, 0.1]。

解:先建立拟合函数文件,并保存为myfun.m

function F = myfun(x,xdata)
F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3;
% 然后给出数据xdata和ydata
xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];
x0 = [10, 10, 10]; %初始估计值
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

结果为:
Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun
x = 0.2269 0.3385 0.3021 %即解出的系数最优估计值
resnorm = 6.2950 %在x解值处的目标最小二乘表达式值。即所谓残差。

转载自:https://blog.csdn.net/power182017/article/details/78889150

标签:resnorm,lsqcurvefit,ydata,matlab,拟合,fun,x0,xdata
来源: https://blog.csdn.net/zxf1769/article/details/96460117