其他分享
首页 > 其他分享> > 哈尔滨工业大学2019年《形式语言与自动机》期末试题

哈尔滨工业大学2019年《形式语言与自动机》期末试题

作者:互联网

哈尔滨工业大学2019年《形式语言与自动机》期末试题

  1. Design a DFA for the language L = {w∈{0,1}* | w contains both 01 and 10 as substrings}.

  2. Design a NFA within four states for the language {a}*∪{ab}*.

  3. Design regular expressions for language over Σ = {0,1}.
    (1).All strings contain the substring 001.
    (2).All strings expect the string 001.

  4. Prove that L = {0m1n | m/n is an integer} is not regular with pumping lemma.

  5. Convert the following NFA into DFA with subset construction.
    在这里插入图片描述

  6. Give a context-free grammar for L = { aibjci+j|i,j>=0}

  7. Let L be the language generated by the grammar G below
    S->AB|BBB
    A->Bb|ε
    B->aB|A
    (1).消除空产生式
    (2).消除单元产生式
    (3).转换到CNF

  8. Design a PDA for L = {w∈{a,b}*|w has more a’s than b’s}

  9. Prove : for every context free language L, the language L’ = {0|w||w∈L} is also context free.

  10. Design a Turing Machine that computes the following function f:0n->Binary(n)
    Where integer n>=1 and binary(n) is the binary representation of n.
    For example: f(03) = 11 f(05) = 101.

注:此题目为考试试卷实录,敬请放心食用。

标签:binary,哈尔滨工业大学,language,Prove,free,形式语言,Design,context,2019
来源: https://blog.csdn.net/GoodLuckWJP/article/details/94589939