哈尔滨工业大学2019年《形式语言与自动机》期末试题
作者:互联网
哈尔滨工业大学2019年《形式语言与自动机》期末试题
-
Design a DFA for the language L = {w∈{0,1}* | w contains both 01 and 10 as substrings}.
-
Design a NFA within four states for the language {a}*∪{ab}*.
-
Design regular expressions for language over Σ = {0,1}.
(1).All strings contain the substring 001.
(2).All strings expect the string 001. -
Prove that L = {0m1n | m/n is an integer} is not regular with pumping lemma.
-
Convert the following NFA into DFA with subset construction.
-
Give a context-free grammar for L = { aibjci+j|i,j>=0}
-
Let L be the language generated by the grammar G below
S->AB|BBB
A->Bb|ε
B->aB|A
(1).消除空产生式
(2).消除单元产生式
(3).转换到CNF -
Design a PDA for L = {w∈{a,b}*|w has more a’s than b’s}
-
Prove : for every context free language L, the language L’ = {0|w||w∈L} is also context free.
-
Design a Turing Machine that computes the following function f:0n->Binary(n)
Where integer n>=1 and binary(n) is the binary representation of n.
For example: f(03) = 11 f(05) = 101.
注:此题目为考试试卷实录,敬请放心食用。
标签:binary,哈尔滨工业大学,language,Prove,free,形式语言,Design,context,2019 来源: https://blog.csdn.net/GoodLuckWJP/article/details/94589939