ggplot的boxplot添加显著性 | Add P-values and Significance Levels to ggplots | 方差分析
作者:互联网
参考:Add P-values and Significance Levels to ggplots
ggpubr的包比较局限,能用的test也比较局限,但是做起来快速简单。
当情况特殊时ggpubr就不能用了,可以自己做了显著性test之后再显示在图上。
# show lable in facet grid plot dat_text <- data.frame() for (i in names(paired_list)) { # Compute t-test res <- t.test(value ~ group, data = paired_list[[i]], paired = TRUE) dat_text <- rbind(dat_text, data.frame(variable=i, pvalue=res$p.value)) } dat_text$label <- paste("P", round(dat_text$pvalue, 3), sep="=") dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label <- paste("*", dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label, sep=" ") dat_text[dat_text$pvalue<0.01,]$label <- paste("**", "P<0.01", sep=" ") library(ggplot2) options(repr.plot.width=8, repr.plot.height=12) # 8x8 g2 <- ggplot(data=genes_expr_melt, aes(x=pseudotime, y=value, fill=group, color=group)) + geom_point(size=0.01, alpha=0.5, aes(color=group, fill=group)) + labs(x = "Pseudotime", y = "Relative expression", title = "Neuronal lineage") + geom_smooth(method = 'loess',se=F,size=0.15,span = 0.7) + # ,alpha=0.05, weight=0.1, facet_wrap( ~ variable, ncol=3, labeller = label_context, scales = "free_y") + # geom_text(size = 5, data = dat_text, mapping = aes(x = Inf, y = Inf, label = label), hjust = 1.05,vjust = 1.5, color=ifelse(dat_text$pvalue < 0.05,'red','black')) + # themes theme(strip.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.spacing=unit(.4, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.5))+ theme(axis.text.x = element_text(face="plain", angle=0, size = 10, color = "black", vjust=0.5), axis.text.y = element_text(face="plain", size = 10, color = "black"), axis.title =element_text(size = 15)) + theme(strip.background = element_rect(fill = "gray90", color = NA))+ # theme(legend.position = "none") + # must remove legend theme(strip.placement = "outside", strip.text.x = element_text(face="plain", size = 13), strip.text.y = element_text(face="plain", size = 11)) + theme(strip.text.x = element_text(margin = margin(1,0,1,0, "mm"))) + scale_color_manual(values=c("deepskyblue","red","gray50")) + scale_fill_manual(values=c("deepskyblue","red","gray50")) plot(g2) # }
多组比较,挑选感兴趣的显示显著性。
data("ToothGrowth") head(ToothGrowth)
library(ggpubr) my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") ) options(repr.plot.width=4, repr.plot.height=4) ggplot(ToothGrowth, aes(x=as.character(dose), y=len, fill=dose)) + geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) + geom_jitter(width = 0.3, size=0.01) +# , aes(color=supp) + stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value stat_compare_means(label.y = 50, label.x = 1.5) # Add global p-value
还可以设定一个ref group来显示显著性差异,只需要改一下设定。
stat_compare_means(method = "anova", label.y = 1.3, label.x = 3)+ # Add pairwise comparisons p-value # # Add global p-value stat_compare_means(label = "p.signif", method = "t.test", ref.group = "hNP-D20", label.y = 1.1) +
生物学的强烈推荐看看Y叔的公众号里的统计相关的文章,非常的基础和实用。
统计
- Five things biologists should know about statistics
- 什么是T检验
- 富集基因之注释缺失
- 落入窠臼
- 你昨天才做的分析,可能是几年前的结果!
- 掐架的额外收获
- boxplot
- 如何告别单身
- 主成分分析
- 一文解决RT-PCR的统计分析
代码例子:
options(repr.plot.width=7, repr.plot.height=6) # facet boxplot bp <- ggplot(expr_data2, aes(x=group, y=expression, fill=NA)) + geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) + geom_jitter(width = 0.3, size=0.01, aes(color=cluster)) + # + geom_boxplot( + facet_grid( cluster ~ gene, switch="y") + # , scales = "free" theme_bw() + stat_compare_means(aes(group = group, label = ..p.signif..), label.x = 1.3,label.y = 1.3, method = "wilcox.test", hide.ns = T) + # label = "p.format", theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + labs(x = "", y = "", title = "") + theme(panel.spacing=unit(.3, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.2)) + theme(axis.ticks.x = element_blank(), axis.ticks = element_line(size = 0.1), axis.text.x = element_text(face="plain", angle=90, size = 8, color = "black", vjust=0.5), axis.text.y = element_text(face="plain", size = 4, color = "black"), axis.title =element_text(size = 12)) + theme(strip.background = element_rect(fill = "gray97", color = NA))+ theme(legend.position = "none") + theme(strip.placement = "outside", strip.text.x = element_text(face="italic", size = 11), strip.text.y = element_text(face="plain", size = 11)) + scale_y_continuous(position="right", limits = c(-0.5,1.5)) + scale_fill_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)]) + scale_color_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)]) bp
标签:显著性,text,ggplot,label,dat,ggpubr,Add,Levels 来源: https://www.cnblogs.com/leezx/p/10440050.html