其他分享
首页 > 其他分享> > 第三章 K近邻法(k-nearest neighbor)

第三章 K近邻法(k-nearest neighbor)

作者:互联网

书中存在的一些疑问

代码实现过程中的一些难点

具体代码实现:

import matplotlib.pyplot as plt
import numpy as np


def ls(p):
    # 返回左子节点
    return p << 1


def rs(p):
    # 返回右子节点
    return p << 1 | 1


def build_kd_tree(data_x, tree, p, dim):
    """
    建立二叉树的过程
    :param data: 建立二叉树所需要的数据
    :param tree: 存二叉树的数组
    :param p: 所在的节点
    :param dim: 现在所在的维度
    :return: None
    """
    # 根据dim对数据进行排序并取其中位数
    # data[data[:,i].argsort()],根据第i维对数据进行排序
    if len(data_x) == 1:
        tree[p] = data_x
        return
    if len(data_x) == 0:
        return
    length = len(data_x[0]) - 1
    data_x = data_x[data_x[:, dim].argsort()]
    mid = len(data_x) >> 1
    tree[p] = data_x[mid]
    build_kd_tree(data_x[:mid, :], tree, ls(p), ((dim + 1) % length))
    build_kd_tree(data_x[mid + 1:, :], tree, rs(p), ((dim + 1) % length))
    return


def find_leaf_node(data, tree):
    # 从根节点出发,循环向下访问kd树,返回其叶子节点
    p, dim, length = 1, 0, len(tree[1]) - 1
    if tree[p, dim].sum() <= 0.0:
        return 1
    while True:
        if data[dim] > tree[p, dim]:
            if tree[rs(p), dim].sum() <= 0.0:
                return p
            p = rs(p)
        else:
            if tree[ls(p), dim].sum() <= 0.0:
                return p
            p = ls(p)
        dim = (dim + 1) % length
    return 1


def distance(a, b, p=1):
    # 我只对数据进行p方运算,不进行开方运算
    sum = 0
    if p == 1:
        c = a - b
    else:
        c = a - b
        c=c.__pow__(p)
    c=c.__abs__()
    sum=c.sum()
    return sum

def find_label(data,tree,nowp,mer):
    if tree[nowp].sum()<=0.0:
        return
    len_of_mer=len(mer)
    len_of_data=len(data)
    mer=mer[mer[:,0].argsort()]
    dis=distance(data,tree[nowp,:-1])
    if dis<=mer[0,0]:
        for i in range(1,len_of_mer-2):
            mer[i]=mer[i+1]
        mer[0]=[dis,tree[nowp,-1]]
        find_label(data,tree,ls(nowp),mer)
        find_label(data,tree,rs(nowp),mer)
    for i in range(1,len_of_mer):
        if dis>mer[len_of_mer-i,0]:
            if i!=1:
                mer[len_of_mer-1]=[dis,tree[nowp,-1]]
            find_label(data, tree, nowp >> 1, mer)
            return





def k_NN(data, tree, p, k):
    label = np.zeros((len(data), 1))
    for i in range(len(data)):
        # 先找到其对应的叶子节点
        #直接默认p=1吧,p对这个影响不是很大吧,主要是k的影响
        pointer = find_leaf_node(data[i], tree)
        mer=np.zeros((k,2))
        for j in range(k):
            mer[j,0]=9999999
        find_label(data[i],tree,pointer,mer)
        # d=np.argmax(np.bincount(int(mer[:,1])))
        # label[i]=d
    return  label


if __name__ == '__main__':
    # train_x, train_y = np.load("data//train_x.npy"), np.load("data//train_y.npy")
    # test_x, test_y = np.load("data//test_x.npy"), np.load("data//test_y.npy")

    # kd树的建立过程,即为二叉树的建立过程,只需要将二叉树对位置的划分变成对某个维度的排序再取其中位数位置的作为划分中点即可
    # 下面为验证数据集,可以看到完美符合
    train_x = np.array(((2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)))
    train_y = np.array((4, 2, 3, 5, 6, 1))
    # 为了防止操作过于繁琐,将标签直接加到数据的最后一列
    test_x=np.array(((1,2),(3,4)))
    data = np.insert(train_x, len(train_x[0]), train_y, axis=1)
    tree = np.zeros(((len(train_x) << 2) + 10, len(data[0])))
    build_kd_tree(data, tree, 1, 0)
    p, k = 1, 4
    test_label = k_NN(test_x, tree, p, k)
    print(test_label)

 

标签:nearest,kd,近邻,tree,train,neighbor,mer,np,data
来源: https://www.cnblogs.com/fghfghfgh666/p/10918773.html