二维凸包
作者:互联网
Graham算法
先对所有点极角排序,其实这里有一个比较骚的操作,不用比x,y,直接算两个点的叉积
然后根据叉积的定义就可以看出这个极角的大小啦!
然后我们找到最靠左的那个点,把它压入栈,每次判断下一个点j和当前点i的叉积是否<0
如果小于0,还是由叉积的定义,j与i的连线是向右拐的(形象理解一下),所以就可以把这个点压入栈
持续递归到回到原点,栈里的点就是凸包集合
#include<cstdio> #include<cstring> #include<algorithm> #include<queue> #include<cmath> #include<iostream> using namespace std; #define O(x) cout << #x << " " << x << endl; #define O_(x) cout << #x << " " << x << " "; #define B cout << "breakpoint" << endl; typedef double db; inline int read() { int ans = 0,op = 1; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') op = -1; ch = getchar(); } while(ch >= '0' && ch <= '9') { (ans *= 10) += ch - '0'; ch = getchar(); } return ans * op; } const int maxn = 1e5 + 5; int n; struct point { db x,y; void clear() { x = y = 0; } point operator - (const point &b) { point c; c.clear(); c.x = x - b.x,c.y = y - b.y; return c; } db operator * (const point &b) { return x * b.y - y * b.x; } db dis() { return x * x + y * y; } }p[maxn],st[maxn]; db calc(point a,point b) { point c = a - b; return sqrt(c.dis()); } bool cmp(int a,int b) { db dta = (p[a] - p[1]) * (p[b] - p[1]); if(dta != 0) return dta > 0; return (p[a] - p[1]).dis() < (p[b] - p[1]).dis(); } int top; void Graham() { int id = 1; for(int i = 2;i <= n;i++) if(p[i].x < p[id].x || (p[i].x == p[id].x && p[i].y < p[id].y)) id = i; if(id != 1) swap(p[1],p[id]); int tp[maxn]; for(int i = 1;i <= n;i++) tp[i] = i; sort(tp + 2,tp + 1 + n,cmp); st[++top] = p[1]; for(int i = 2;i <= n;i++) { int j = tp[i]; while(top >= 2 && (p[j] - st[top - 1]) * (st[top] - st[top - 1]) >= 0) top--; st[++top] = p[j]; } } db ans; int main() { n = read(); for(int i = 1;i <= n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); Graham(); st[top + 1] = st[1]; for(int i = 2;i <= top + 1;i++) ans += calc(st[i],st[i - 1]); printf("%.2lf",ans); }View Code
标签:ch,int,top,凸包,二维,叉积,st,include 来源: https://www.cnblogs.com/LM-LBG/p/10877801.html