其他分享
首页 > 其他分享> > 吴恩达机器学习私人总结(2)

吴恩达机器学习私人总结(2)

作者:互联网

octave教程和MATLAB类似。
octave:11> PS1('>> ')更改提示符

格式化输出:
disp(sprintf('6 decimals: %0.6f', a))
对矩阵A扩充一列
A = [A, [100; 101; 102]]
矩阵A合并为一列:
A(:)
矩阵求伪逆:https://blog.csdn.net/yinyu19950811/article/details/61420131
pinv(A)
构造10000个随机数,绘制分布图
w=randn(1,10000);
hist(w,50)
加载数据:
load featuresX.dat/mat
whos显示数据。
size(A)计算大小,length计算长度
单位矩阵和逆矩阵
eye(3)
flipud(eye(3))
路径转换:
addpath('xx');

使用矩阵做运算比传统的用循环速度快而且代码短。
分类问题强烈不建议使用回归方式完成。
使用sigmoid回归函数用于分类问题,它实际是一个分类算法。

分类方案中采用的函数考虑线性和非线性的情况:

在使用梯度下降法进行过程中,为了减少可能进行局部最小采用的代价函数变化情况(二分类):

 

除梯度下降法的其它方案:更有效但是更复杂。

使用Octave运行,自定义好代价函数并让其返回代价函数公式和代价函数每个梯度,自定义options,自定义初始化Theta,使用函数fminunc进行计算。

得到最终的结果。返回了目标theta,达到的最小误差,exitFlag表示成功(Converged to a solution point.)。

 

 在针对大于2分类情况,使用分割,将多分类转化为二分类。如三分类,转化为3个2分类。四分类转化为4个二分类等。



标签:总结,吴恩达,函数,自定义,分类,矩阵,使用,私人,代价
来源: https://www.cnblogs.com/bai2018/p/10802800.html