害死人不偿命的(3n+1)猜想
作者:互联网
题目
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 ( 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (,以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
简单的递归即可
#include<iostream> #include<cstdio> using namespace std ; int num=0; int callatz(int n) { if(n==1) { return num; } if(n%2 == 0) { num++; return callatz(n/2); } else { num++; return callatz((3*n+1)/2); } } int main() { int n; cin>>n; cout<<callatz(n)<<endl; return 0; }
标签:害死,偿命,return,猜想,int,callatz,num,3n,卡拉 来源: https://www.cnblogs.com/hdyss/p/10738390.html