其他分享
首页 > 其他分享> > 【洛谷5280】[ZJOI2019] 线段树(线段树大力分类讨论)

【洛谷5280】[ZJOI2019] 线段树(线段树大力分类讨论)

作者:互联网

点此看题面

大致题意: 给你一棵线段树,两种操作。一种操作将每棵线段树复制成两个,然后在这两个线段树中的一个上面进行\(Modify(l,r)\)。另一种操作询问所有线段树的\(tag\)总和。

大力分类讨论

我们考虑用线段树来进行维护。

定义一个\(f_{rt}\),表示在当前所有线段树中编号为\(rt\)的节点上的\(tag\)之和

然后对于每次修改,就需要大力分类讨论,来计算新增加的\(2^{t-1}\)棵树对\(f_x\)的贡献

处理被访问到但未进行任何操作的节点

考虑再记录一个\(g_{rt}\),表示当前所有线段树中编号为\(rt\)的节点到根节点的路径上(包括该节点)存在至少一个节点\(tag\)值为\(1\)的方案数

则这样一来在这种情况下我们就可以直接将\(f_{rt}+=g_{rt}\)了。

但就有了一个新的问题,如何维护\(g_{rt}\)?

于是又要进行一波与先前类似的分类讨论。

整理+优化

接下来,我们来整理一下上面的内容:

情况 \(f_{rt}\) \(g_{rt}\)
当这个节点未被访问到 \(f_{rt}*=2\) \(g_{rt}*=2\)
当这个节点是被修改的节点 \(f_{rt}+=2^{t-1}\) \(g_{rt}+=2^{t-1}\)
当这个节点被访问到且进行过\(PushDown\)操作 无变化 无变化
当这个节点被访问到但未进行任何操作 \(f_{rt}+=g_{rt}\) \(g_{rt}*=2\)

考虑到对于未访问到的节点,我们一律都是将答案乘\(2\)的。

那么,我们能不能换一种思维,即每次不修改未被访问到的节点,而是把其余三种情况时的\(f_{rt}\)和\(g_{rt}\)除以\(2\),然后在输出答案时把答案乘上\(2^t\)。

则就得到了这样一个新表格:

情况 \(f_{rt}\) \(g_{rt}\)
当这个节点未被访问到 无变化 无变化
当这个节点是被修改的节点 \(f_{rt}=\frac{f_{rt}+1}2\) \(g_{rt}=\frac{g_{rt}+1}2\)
当这个节点被访问到且进行过\(PushDown\)操作 无变化 无变化
当这个节点被访问到但未进行任何操作 \(f_{rt}=\frac{f_{rt}+g_{rt}}2\) 无变化

这样就方便许多。

维护\(g\)的修改

但是,我们还是要注意,要在\(PushDown\)的同时维护\(g\)的修改。

我们用\(tag_{rt}\)来记录当前节点的\(g\)在上一次\(PushDown\)后被修改过多少次

则我们需要将\(rt<<1\)和\(rt<<1|1\)的\(g\)分别进行\(tag_{rt}\)次\(g=\frac{g+1}2\)。

设要进行\(tag_{rt}\)次\(g=\frac{g+1}2\)的点为\(k\),易得最终结果为:

\[\frac {g_k+2^{tag_{rt}-1}+2^{tag_{rt}-2}+...+2^{tag_{rt}}}{2^{tag_{rt}}}\]

式子的后半部分显然可以用等底数列求和公式化简,得到:

\[\frac {g_k+{2^{tag_{rt}}-1}}{2^{tag_{rt}}}=\frac {g_k}{2^{tag_{rt}}}+1-\frac 1{2^{tag_{rt}}}\]

分母可以预处理\(2\)的幂的逆元,然后就差不多了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define X 998244353
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
#define Dec(x,y) ((x-=(y))<0&&(x+=X))
#define Shl(x) ((x<<=1)>=X&&(x-=X))
using namespace std;
int n;
class FastIO
{
    private:
        #define FS 100000
        #define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
        #define pc(c) (C^FS?FO[C++]=c:(fwrite(FO,1,C,stdout),FO[(C=0)++]=c))
        #define tn (x<<3)+(x<<1)
        #define D isdigit(c=tc())
        int T,C;char c,*A,*B,FI[FS],FO[FS],S[FS];
    public:
        I FastIO() {A=B=FI;}
        Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
        Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
        Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
        Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
        I void clear() {fwrite(FO,1,C,stdout),C=0;}
}F;
class SegmentTree//线段树
{
    private:
        #define PD(x) O[x].t&&\//下传标记
        (\
            O[x<<1].g=((1LL*O[x<<1].g*I2[O[x].t]%X+1-I2[O[x].t])%X+X)%X,\//更新左儿子g值
            O[x<<1|1].g=((1LL*O[x<<1|1].g*I2[O[x].t]%X+1-I2[O[x].t])%X+X)%X,\//更新右儿子g值
            O[x<<1].t+=O[x].t,O[x<<1|1].t+=O[x].t,O[x].t=0\//下传修改次数
        )
        int ans,pw,I2[N+5];struct node {int f,g,t;}O[N<<2];
        I void upt(CI l,CI r,CI rt,CI tl,CI tr)//修改
        {
            Dec(ans,O[rt].f),O[rt].f=1LL*O[rt].f*I2[1]%X,O[rt].g=1LL*O[rt].g*I2[1]%X;//先删除原来贡献,并将当前f,g除以2
            if(tl<=l&&r<=tr) Inc(O[rt].f,I2[1]),Inc(O[rt].g,I2[1]);//分类讨论
            else if(tr<l||r<tl) Inc(O[rt].f,O[rt].g),Shl(O[rt].g);
            if(Inc(ans,O[rt].f),tr<l||r<tl) return;if(tl<=l&&r<=tr) return (void)(++O[rt].t);//加回新答案,然后模拟线段树过程
            PD(rt);RI mid=l+r>>1;upt(l,mid,rt<<1,tl,tr),upt(mid+1,r,rt<<1|1,tl,tr);
        }
    public:
        I SegmentTree() {pw=I2[0]=1,I2[1]=X+1>>1;}
        I void Init(CI x) {for(RI i=2;i<=x;++i) I2[i]=1LL*I2[i-1]*I2[1]%X;}//预处理2的幂的逆元
        I void Update(CI x,CI y) {upt(1,n,1,x,y),Shl(pw);}
        I int GetAns() {return 1LL*ans*pw%X;}//最后答案乘上2^t
}S;
int main()
{
    RI Qtot,op,x,y;F.read(n,Qtot),S.Init(Qtot);
    W(Qtot--) F.read(op),op^2?(F.read(x,y),S.Update(x,y)):F.writeln(S.GetAns());
    return F.clear(),0;
}

标签:rt,洛谷,5280,线段,访问,tag,PushDown,节点,define
来源: https://www.cnblogs.com/chenxiaoran666/p/Luogu5280.html